摘要(英) |
The stationary and exclusive allocation of radio spectrum cause low spectral efficiency and, therefore, waste spectrum. In order to improve the usage of spectrum in time and space domains, dynamic spectrum access (DSA) has become a popular research topic in recent years. Hence cognitive radio (CR), which has spectrum-sensing ability, has become one of the mainstream researches in the field.
The idea of CR is basically to raise utilization of spectrum by using the radio spectrum that is temporaly unused, but it still remains a lot of problems needed to be overcomed. For examples, increasing debug baud rate, improving collision frequency, and advancing overall performance are all significant directions for future researches. Furthermore, when operating the wireless cognitive radio network in ad hoc applications, either secondary user (SU), who wants to deliver data, needs to rendezvous with its peer firstly. Although the fusion center or common control approaches can provide effective management for the rendezvous process, the centralized approach introduces the dwawback of scalability and reliability issue, especially for the loose-managed CR network. In this thesis, we propose a fully distributed rendezvous algorithm and the associated data delivery method for ad hoc communication in CR network.
Throughout this paper, we assume that the SU have two antennae so that the transmission and receiving can be performed simultaneously without dead lock. In addition, we also propose the relay concept to decrease the time to rendezvous. Exhaustive simulations were conducted to show that the proposed relay based schemes can effectively reduce the time to rendezvous and the data delivery time and, therefore, the system throughput is improved as well when compared with the no-relay scheme.
|
參考文獻 |
[1] FCC, “Notice of proposed rule making and order”, FCC Doc, ET Docket No 03-222, December 2003.
[2]A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas, “LTE-Advanced: next-generation wireless broadband technology”, IEEE Communication Magazine, vol. 17, no. 3, pp. 10~22, June 2010
[3] I. F. Akyildiz et al., “NeXt Generation/Dynamic Spectrum Access/Cognitive Radio Wireless Networks: A Survey,” Comp. Networks J., vol. 50, Sept. 2006, pp. 2127–59.
[4] O. Ileri, D. Samardzija, and N. B. Mandayam, “Demand Responsive Pricing and Competitive Spectrum Allocation via Spectrum Server,” Proc. IEEE DySPAN 2005,
Nov. 2005, pp. 194–202.
[5] S. Haykin, “Cognitive Radio: Brain-Empowered Wireless Communications,” IEEE JSAC, vol. 23, no. 2, Feb. 2005,pp. 201–20.
[6] Ian F. Akyildiz, Won-Yeol Lee, Mehmet C. Vuran, and Shantidev Mohanty,” A Survey on Spectrum Management in Cognitive Radio Networks” IEEE Communications Magazine, April 2008.
[7] Hai Liu, Zhiyong Lin2, Xiaowen Chu, Yiu-Wing Leung, “Taxonomy and Challenges of Rendezvous Algorithms in Cognitive Radio Networks,” International Conference on Computing, Networking and Communications Invited Position Paper Track, 2012.
[8] Nick C. Theis , Ryan W. Thomas , Luiz A. DaSilva, Rendezvous for Cognitive Radios, IEEE Transactions on Mobile Computing, v.10 n.2, p.216-227, Feb.2011.
[9] Cam Tran, Ryan P. Lu, Ayax D. Ramirez,Richard C. Adams, Thomas O. Jones, Clifton B. Phillips, Serey Thai, “Dynamic Spectrum Access: Architectures and implications” Military Communications Conference, 2008. MILCOM 2008. IEEE, p16-19, Nov.2008.
[10] M.M. Buddhikot, P. Kolodzy, S. Miller, K. Ryan, and J. Evans, “DIMSUMNet: New Directions in Wireless Networking Using Coordinated Dynamic Spectrum Access,” Proc. Sixth IEEE Int. Symp. World of WirelessMobile and Multimedia Networks (WOWMOM ’05), pp. 78-85, 200.2005.
[11] Jun Zhao, Haitao Zheng, Guang-Hua Yang, ” Distributed Coordination in Dynamic Spectrum Allocation Networks,” in Proc of IEEE DySPAN 2005, pp. 259-268, Nov. 2005.
[12] M.D. Silvius, F. Ge, A. Young, A.B. MacKenzie, and C.W. Bostian,“Smart Radio: Spectrum Access for First Responders,” Proc. SPIE, 2008.
[13] Zhiyong Lin, Hai Liu, Xiaowen Chu, and Yiu-Wing Leung, “Jump-Stay Based Channel-hopping Algorithm with Guaranteed Rendezvous for Cognitive Radio Networks” IEEE INFOCOM 2011.
[14] L. DaSilva and I. Guerreiro, “Sequence Based Rendezvous for Dynamic Spectrum Access,” Proc. IEEE Int’l Symp. New Frontiers in Dynamic Spectrum Access Networks (DySPAN ’08), pp. 1-7, Oct. 2008.
[15] Juncheng Jia, Qian Zhang, “Rendezvous Protocols Based on Message Passing in Cognitive Radio Networks” Wireless Communications, IEEE Transactions, vol. 12, No. 11, Nov. 2013.
[16] ECMA Std. 392, “MAC and PHY for Operation in TV White Space,” Dec. 2009.
[17] FCC, “Spectrum Policy Task Force Report,” FCC Doc. ET Docket No. 02-135 Nov. 2002.
[18] Xiao and F. Hu, “Cogni tive Radio Networks.” CRC Press. 2008.
[19] Ying-Cheng Wang, “The Analysis of Shift Sequence Based Channel Selection in Cognitive Radio Network,” Master Thesis, National Central University, 2011.
|