博碩士論文 965402016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.117.188.105
姓名 陳志明(Jyh-Ming Chen)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 網際網路服務之智慧傳輸策略
(Intelligent Transport Strategy for Future Internet Services)
相關論文
★ 具多重樹狀結構之可靠性群播傳輸★ 在嵌入式行動裝置上設計與開發跨平台Widget
★ 在 ARM 架構之嵌入式系統上實作輕量化的手持多媒體播放裝置圖形使用者介面函式庫★ 基於網路行動裝置所設計可擴展的服務品質感知GStreamer模組
★ 針對行動網路裝置開發可擴展且跨平台之GSM/HSDPA引擎★ 於單晶片多媒體裝置進行有效率之多格式解碼管理
★ IMS客戶端設計與即時通訊模組研發:個人資訊交換模組與即時訊息模組實作★ 在可攜式多媒體裝置上實作人性化的嵌入式小螢幕網頁瀏覽器
★ 以IMS為基礎之及時語音影像通話引擎的實作:使用開放原始碼程式庫★ 電子書嵌入式開發: 客制化下載服務實作, 資料儲存管理設計
★ 於數位機上盒實現有效率訊框參照處理與多媒體詮釋資料感知的播放器設計★ 具數位安全性的電子書開發:有效率的更新模組與資料庫實作
★ 適用於異質無線寬頻系統的新世代IMS客戶端軟體研發★ 在可攜式數位機上盒上設計並實作重配置的圖形使用者介面
★ Friendly GUI design and possibility support for E-book Reader based Android client★ Effective GUI Design and Memory Usage Management for Android-based Services
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著無線通訊技術的演進,多媒體與雲端運算在新世代網際網路中逐漸成為最受歡迎的通訊服務。不論電腦或者是行動裝置,大多都已至少配備著兩個以上的有線或是無線的網路接取介面。因此學者們提出了Stream Control Transmission Protocol (SCTP) 以有效使用所有網路接取介面來增進傳輸效能及可靠性,而CMT-SCTP的發表更將SCTP擴展至支援多重路徑同時傳輸,充份利用頻寬提昇系統效能。由於SCTP的壅塞控制機制是承襲TCP而來的, 如同TCP所遭遇到的問題,SCTP在有線與無線結合之異質性網路中仍會遭受到非必要的效能減損。此乃因為SCTP的壅塞控制機制無法判別封包遺失的原因,以至於不恰當的調降壅塞窗口。為了解決上述問題來提昇效能,我們提出一個應用於異質性網路中以延遲變異為基礎、擁有點對點特性的壅塞控制機制來增進效能,並提出以延遲變異為基礎的封包遺失判別方針,使整體方法更加強健。此外還整合了可利用頻寬的預測機制,穩定傳輸時的瓶頸流量,實驗結果顯示出我們提出的方法在異質性網路與多重路徑同時傳輸的環境下,確實有效地使效能顯著的提昇 。
摘要(英) With the advances of wireless communication technologies, it significantly enables multimedia and cloud-related applications for the new generation Internet services. Indeed, most of mobile devices are equipped with multiple wired or wireless network interfaces. Stream Control Transmission Protocol (SCTP) has been proposed for effectively utilizing all network interfaces to improve performance and reliability. Moreover, Concurrent Multipath Transfer (CMT) is an extension of SCTP to support concurrent data transmission through multiple available paths. However, SCTP suffers performance degradation over wired-wireless heterogeneous networks since its congestion control mechanism is only slightly modified from traditional TCP. Because SCTP cannot differentiate loss events between wireless and congestion, which makes the congestion window size be reduced inappropriately. In this thesis, we propose a jitter-based congestion control scheme with end-to-end semantics over wired-wireless networks to address the above problem. Besides, we also solved ineffective jitter ratio problem that may misjudge congestion loss event. Available bandwidth estimation scheme is further integrated into our congestion control mechanism to make the bottleneck more stabilized. Simulation results reveal that proposed schemes give prominence to improve performance effectively over wired-wireless networks.
關鍵字(中) ★ 多重路徑同時傳輸
★ 延遲變異
★ 壅塞控制
關鍵字(英) ★ SCTP
★ Concurrent multipath transfer
★ Jitter-based congestion control
論文目次 摘 要 …………………………………………………………………………………………………………………… i
Abstract………………………………………………………………………………………………………………………… ii
誌 謝 …………………………………………………………………………………………………………………… iii
Contents ……………………………………………………………………………………………………………………… iv
List of Figures …………………………………………………………………………………………………… vii
List of Tables …………………………………………………………………………………………………… ix
Chapter 1. Introduction ……………………………………………………………………………… 1
1.1 SCTP ……………………………………………………………………………………………………………… 1
1.2 CMT-SCTP …………………………………………………………………………………………………… 3
1.3 Congestion control over wireless link ……………………… 5
1.4 Thesis organization ……………………………………………………………………… 7
Chapter 2. End-to-end Congestion Control for SCTP…………… 8
2.1 Motivation and Related Work ………………………………………………… 8
2.1.1 ECN-D SCTP ………………………………………………………………………………………… 9
2.1.2 WiSE ……………………………………………………………………………………………………… 10
2.1.3 TCP Vegas and TCP Veno ………………………………………………………… 10
2.1.4 TCP Jersey ………………………………………………………………………………………… 11
2.1.5 JTCP ………………………………………………………………………………………………………… 12
2.2 Proposed Protocol: JSCTP ………………………………………………………… 16
2.2.1 Jitter-based loss differentiation scheme over
SCTP ………………………………………………………………………………………………………… 16
2.2.1.1 Collect samples of inter-arrival jitter …………… 16
2.2.1.2 Independent jitter ratio for different path … 18
2.2.1.3 Decision rule for loss differentiation ……………… 19
2.2.1.4 Ineffective jitter ratio problem ……………………………… 20
2.2.2 Congestion control policy of JSCTP ………………………… 22
2.2.2.1 Rate-based congestion control ……………………………………… 22
2.2.2.2 Operation of JSCTP congestion control ………………… 23
2.3 Simulation Results ………………………………………………………………………… 27
2.3.1 Comparion of different JSCTP parameter settings 29
2.3.2 Wireless SCTP throughput comparison ……………………… 31
2.3.3 Inter-protocol Fairness ……………………………………………………… 35
2.3.4 TCP-Friendly …………………………………………………………………………………… 37
Chapter 3. Jitter-based Congestion Control for
Concurrent Multipath Transfer …………………………………… 39
3.1 Related Work ………………………………………………………………………………………… 40
3.2 CMT using SCTP multihoming …………………………………………………… 42
3.3 Proposed mechanism ………………………………………………………………………… 46
3.3.1 Congestion control policy of CMT-JSCTP ……………… 47
3.3.2 Retransmission policy …………………………………………………………… 49
3.3.3 Neural network classifier ………………………………………………… 50
3.3.3.1 Architecture of backpropagation neural network 50
3.3.3.2 Using NS-2 to generate learning sample set …… 52
3.3.3.3 Congestion control policy of CMT-JSCTP-NN ……… 53
3.4 Simulation Results ………………………………………………………………………… 56
3.4.1 Simulation scenarios ……………………………………………………………… 56
3.4.2 Throughput comparison with varying loss rate … 57
3.4.3 Performance of different retransmission policies 60
3.4.4 Throughput comparison with varying propagation
delay ………………………………………………………………………………………………………… 62
3.4.5 Throughput comparison with varying bandwidth … 63
3.4.6 Simulation result of neural network classifier…66
Chapter 4. Conclusion and future works ………………………………………… 67
Bibliography ……………………………………………………………………………………………………………… 69
參考文獻 [1] Q. Bi, G. I. Zysman, and H. Xu, “Wireless mobile communications at the start of the 21st century,” IEEE Communications Magazine, vol. 39, no. 1, pp. 110–116, 2001.

[2] A. Greenspan, M. Klerer, J. Tomcik, R. Canchi, and J. Wilson, “IEEE 802.20: Mobile broadband wireless access for the twenty-first century,” IEEE Communications Magazine, vol. 46, no. 7, pp. 56–63, 2008.

[3] K. C. Leung and V. O. K. Li, “Transmission Control Protocol (TCP) in wireless networks: issues, approaches and challenges,” IEEE Communications Surveys, vol. 4, no. 4, pp. 64–79, 2006.

[4] R. Stewart and C. Metz, “SCTP: new transport protocol for TCP/IP,” IEEE Internet Computing, vol. 5, no. 6, pp. 64–69, 2001.

[5] R. Stewart, “Stream Control Transmission Protocol,” Internet Engineering Task Force (IETF), RFC 2960, 2000.

[6] H. S. Liu, C. C. Hsieh, H. C. Chen, C. H. Hsieh, and W. J. Liao, “Exploiting multilink SCTP for live broadcasting service,” in Proceedings of IEEE Vehicular Technology Conference, Taipei, Taiwan, May 2010.

[7] M. Mathis, “TCP Selective Acknowledgments Options,” Internet Engineering Task Force (IETF), RFC 2018, 1996.

[8] E. P. Rathgeb, “On the Robustness of SCTP against DoS Attacks,” in Proceedings of the International Conference on Convergence and Hybrid Information Technology (ICCIT ’08), vol.2, pp. 1144–1149, Nov. 2008.

[9] S. Fu and M. Atiquzzaman, “SCTP: state of the art in research products, and technical challenges,” IEEE Communications Magazine, vol. 42, no. 4, pp. 64–76, 2004.

[10] M. Scharf and S. Kiesel, “Head-of-line Blocking in TCP and SCTP: Analysis and Measurements,” in Proceedings of IEEE Global Telecommunications Conference, pp. 1–5, Nov. 2006.

[11] R. Stewart, “Stream Control Transmission Protocol (SCTP),” RFC 4960, 2007.

[12] P. Natarajan, F. Baker, P. D. Amer, and J. T. Leighton, “SCTP: what, why, and how,” IEEE Internet Computing Magazine, vol. 13, no. 5, pp. 81-85, 2009.

[13] J. R. Iyengar, P. D. Amer, and R. Stewart, “Concurrent Multipath Transfer Using SCTP Multihoming Over Independent End-to-End Paths,” IEEE Transactions On Networking, vol. 14, no. 5, pp. 951-964, 2006.

[14] S. Shailendra, R. Bhatacharjee, and S. K. Bose, “MPSCTP: A Simple and Efficient Multipath Algorithm for SCTP,” IEEE Communication Letters, vol. 10, issue. 15, pp. 1139-1141, 2011.

[15] R. S. Cheng, M. Y. Shih, C. H. Ke, and Q. Zhou, “Improving performance of MPEG-based stream by SCTP multi-streaming mechanism,” in Proceedings of the International Conference on Communications and Networking in China, 2010.

[16] C. Xu, G. M. Muntean, E. Fallon, and A. Hanley, “Distributed Storage Assisted Data-driven Overlay Network for P2P VOD services,” IEEE Transactions on Broadcasting, vol. 55, no. 1, pp. 1-10, 2009.

[17] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control,” Internet Engineering Task Force (IETF), RFC 2581, 1999.

[18] J. Shi, Y. Jin, H. Huang, and D. Zhang, “Experimental Performance Studies of SCTP in Wireless Access Networks,” in Proceedings of the International Conference on Communication Technology (ICCT ’03), pp. 392–395, April 2003.

[19] G. Xylomenos, G. C. Polyzos, P. Mahonen, and M. Saaranen, “TCP performance issues over wireless links,” IEEE Communications Magazine, vol. 39, no. 4, pp. 52–58, 2001.

[20] A. Bakre and B. R. Badrinath, “I-TCP: indirect TCP for mobile hosts,” in Proceedings of the 15th International Conference on Distributed Computing Systems, pp. 136–146, June 1995.

[21] J. H. Hu, K. L. Yeung, S. C. Kheong, and G. Feng, “Hierarchical cache design for enhancing TCP over heterogeneous networks with wired and wireless links,” in Proceedings of IEEE Global Telecommunications Conference, vol. 1, pp. 338–343, 2000.

[22] Y. E. Tian, K. Xu, and N. Ansari, “TCP in wireless environments: problems and solutions,” IEEE Communications Magazine, vol. 43, no. 3, pp. S27–S32, 2005.

[23] J. M. Chen, C. H. Chu, Eric H. K. Wu, M. F. Tsai, and J. R. Wang, “Improving SCTP Performance by Jitter-Based Congestion Control over Wired-Wireless Networks,” EURASIP Journal on Wireless Communications and Networking, vol. 2011, Article ID 103027, 2011.

[24] S. Liu, S. Yang, and W. Sun, “Collaborative SCTP: a collaborative approach to improve the performance of SCTP over wired-cum-wireless networks,” in Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN ’04), pp. 276–283, November 2004.

[25] G. Ye, T. N. Saadawi, and M. J. Lee, “Improving stream control transmission protocol performance over lossy links,” IEEE Journal on Selected Areas in Communications, vol. 22, no. 4, pp. 727–736, 2004.

[26] R. Fracchia, C. Casetti, C. F. Chiasserini, and M. Meo, “A WISE extension of SCTP for wireless networks,” in Proceedings of IEEE International Conference on Communications (ICC ’05), pp. 1448–1453, May 2005.

[27] K. K. Ramakrishnan and S. Floyd, “A Proposal to add Explicit Congestion Notification (ECN) to IP,” Internet Draft, Work in progress, January 1999.

[28] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang, “TCP Westwood: bandwidth estimation for enhanced transport over wireless links,” in Proceedings of the 7th Annual International Conference on Mobile Computing and Networking, pp. 287–297, July 2001.

[29] M. Gerla, M. Y. Sanadidi, R. Wang, A. Zanella, C. Casetti, and S. Mascolo, “TCP westwood: Congestion window control using bandwidth estimation,” in Proceedings of IEEE Global Telecommunicatins Conference (GLOBECOM ’01), pp. 1698–1702, November 2001.

[30] L. S. Brakmo and L. L. Peterson, “TCP Vegas: end to end congestion avoidance on a global internet,” IEEE Journal on Selected Areas in Communications, vol. 13, no. 8, pp. 1465–1480, 1995.

[31] K. Takagaki, H. Ohsaki, and M. Murata, “Analysis of a window-based flow control mechanism based on TCP Vegas in heterogeneous network environment,” in Proceedings of the International Conference on Communications (ICC ’01), pp. 3224–3228, June 2000.

[32] C. P. Fu and S. C. Liew, “TCP Veno: TCP enhancement for transmission over wireless access networks,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 2, pp. 216–228, 2003.

[33] K. Xu, Y. Tian, and N. Ansari, “TCP-Jersey for wireless IP communications,” IEEE Journal on Selected Areas in Communications, vol. 22, no. 4, pp. 747–756, 2004.

[34] E. H. K. Wu and M. Z. Chen, “JTCP: Jitter-based TCP for heterogeneous wireless networks,” IEEE Journal on Selected Areas in Communications, vol. 22, no. 4, pp. 757–766, 2004.

[35] S. Y. Chen, E. H. K. Wu, and M. Z. Chen, “A new approach using time-based model for TCP friendliness rate estimation,” in Proceedings of the International Conference on Communications (ICC ’03), pp. 679–683, May 2003.

[36] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A Transport Protocol for Real-Time Application,” Internet Engineering Task Force (IETF), RFC 1889, 1996.

[37] K. Xu, Y. Tian, and N. Ansari, “Improving TCP performance in integrated wireless communications networks,” Computer Networks, vol. 47, no. 2, pp. 219–237, 2005.

[38] S. McCanne and S. Floyd. ns Network Simulator. Available: http://www.isi.edu/nsnam/ns/

[39] J. H. Hu and K. L. Yeung, “FDA: a novel base station flow control scheme for TCP over heterogeneous networks,” in Proceedings of the 20th Annual Joint Conference on the IEEE Computer and Communications Societies (IEEE INFOCOM’01), pp. 142–151, April 2001.

[40] T. D. Wallace and A. Shami, “A Review of Multihoming Issues Using the Stream Control Transmission Protocol,” IEEE Communications Surveys & Tutorials, vol. 14, no. 2, pp. 565-578, 2012.

[41] C. Xu, E. Fallon, Y. S. Qiao, L. J. Zhong and G. M. Muntean, “Performance Evaluation of Multimedia Content Distribution Over Multi-Homed Wireless Networks,” IEEE Transactions on Broadcasting, vol. 57, no. 2, pp. 204-215, 2011.

[42] B. Wang, W. Feng, S. D. Zhang and H. K. Zhang, “Concurrent multipath transfer protocol used in ad hoc networks,” IET Communications, vol. 4, no. 4, pp. 884-893, 2010.

[43] J. Liao, J. Wang, T. Li and X. Zhu , “Introducing multipath selection for concurrent multipath transfer in the future internet”, Computer Networks, Special Issue on Architectures and Protocols for the Future Internet, vol. 55, no. 4, pp. 1024-1035, 2011.

[44] C. M. Huang and M. S. Lin, “Fast Retransmission for Concurrent Multipath Transfer (CMT) over Vehicular Networks,” IEEE Communications Letters, vol. 15, no. 4, pp. 386-388, 2011.

[45] L. Cui, S. J. Koh and W. J. Lee, “Fast Selective ACK Scheme for Throughput Enhancement of Multi-Homed SCTP Hosts,” IEEE Communications Letters, vol. 14, no. 6, pp. 587-589, 2010.

[46] T. Dreibholz, H. Adhari, M. Becke, and E.P. Rathgeb, “Simulation and Experimental Evaluation of Multipath Congestion Control Strategies,” in Proceedings of the 26th International Conference on Advanced Information Networking and Applications Workshops (WAINA), pp. 1113–1118, 2012.

[47] M. Alowaidi, F.R. Yu, A. El Saddik, and A. Aljanah, “Improving performance of smart grid communications using multi-homing and multi-streaming offered by SCTP,” in Proceedings of IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 175–180, 2012.

[48] X. Zhang, T.M.T. Nguyen, and G. Pujolle, “Kalman filter based bandwidth estimation and predictive flow distribution for concurrent multipath transfer in wireless networks,” in Proceedings of IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC), pp. 305–309, 2012.

[49] T. Kim, J. Lee, and Y. I. Eom, “Concurrent Multipath Transfer using SCTP multihoming over heterogeneous network paths,” in Proceedings of International Conference on Control Automation and Systems (ICCAS), pp. 1598–1602, 2010.

[50] T. Dreibholz, E. P. Rathgeb, I. Rungeler, R. Seggelmann, M. Tuxen and R. R. Stewart, “Stream control transmission protocol: Past, current, and future standardization activities,” IEEE Communications Magazine, vol. 49, no. 4, pp. 82-88, 2011.

[51] K. Lan and N. Sha, “A CMT congestion window updates mechanism based on TCP Westwood,” in Proceedings of IEEE International Conference on Mechatronic Science, Electric Engineering and Computer, pp. 2119-2122, 2011.

[52] J. R. Iyengar, P. D. Amer, and R. Stewart, “Retransmission policies for concurrent multipath transfer using SCTP multihoming,” in Proceedings of IEEE International Conference on Networks (ICON), vol. 2, pp. 713-719, 2004.

[53] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, and V. Paxson, “Stream Control Transmission Protocol,” RFC 2960, Oct. 2000.

[54] R. H. Nielsen, “Theory of the backpropagation neural network,” in Proceedings of International Joint Conference on Neural Networks (IJCNN), vol. 1, pp. 593-605, 1989.

[55] P. Geurts, I. E. Khayat, and G. Leduc, “A machine learning approach to improve congestion control over wireless computer networks,” in Proceedings of IEEE International Conference on Data Mining (ICDM), pp. 383-386, 2004.

[56] L. Fausett, “Fundamentals of neural networks: Architecture algorithms and applications,” Addison-Wesley, 1994.

[57] A. Caro and J. Iyengar, NS-2 SCTP Module, Protocol Engineering Lab (PEL), University of Delaware, Newark, DE, Available: http:// pel.cis.udel.edu
指導教授 吳曉光(Eric Hsiao-Kuang Wu) 審核日期 2014-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明