參考文獻 |
1. Salton, G., A. Wong, and C.-S. Yang, A vector space model for automatic indexing. Communications of the ACM, 1975. 18(11): p. 613-620.
2. Ruthven, I. and M. Lalmas, A survey on the use of relevance feedback for information access systems. The Knowledge Engineering Review, 2003. 18(2): p. 95-145.
3. Salton, G. and C. Buckley, Term-weighting approaches in automatic text retrieval. Information processing & management, 1988. 24(5): p. 513-523.
4. Salton, G. and M.E. Lesk, Computer evaluation of indexing and text processing. Journal of the ACM (JACM), 1968. 15(1): p. 8-36.
5. Salton, G. and M.J. McGill, Introduction to modern information retrieval. 1986, New York, NY, USA: McGraw-Hill, Inc.
6. Rocchio, J.J., Relevance feedback in information retrieval. The Smart retrieval system - experiments in automatic document processing, 1971: p. 313-323.
7. Efthimiadis, E.N., Query expansion. Annual review of information science and technology, 1996. 31: p. 121-187.
8. Onoda, T., H. Murata, and S. Yamada. Active Learning with Support Vector Machines in the Relevance Feedback Document Retrieval. in Control, Automation, Robotics and Vision, 2006. ICARCV′06. 9th International Conference on. 2006. IEEE.
9. Kang, J.W., et al. A term cluster query expansion model based on classification information in natural language information retrieval. in Artificial Intelligence and Computational Intelligence (AICI), 2010 International Conference on. 2010. IEEE.
10. Chen, Z. and Y. Lu, Using text classification method in relevance feedback, in Intelligent Information and Database Systems. 2010, Springer Berlin Heidelberg: HaiDian District, Beijing, P.R.China. p. 441-449.
11. Chen, Z. and Y. Lu. A SVM based method for active relevance feedback. in Computer and Automation Engineering (ICCAE), 2010 The 2nd International Conference on. 2010. Singapore: IEEE.
12. Song, W. and S.C. Park, Genetic algorithm for text clustering based on latent semantic indexing. Computers & Mathematics with Applications, 2009. 57(11-12): p. 1901-1907.
13. Deerwester, S.C., et al., Indexing by latent semantic analysis. JASIS, 1990. 41(6): p. 391-407.
14. Landauer, T.K., P.W. Foltz, and D. Laham, An introduction to latent semantic analysis. Discourse processes, 1998. 25: p. 259-284.
15. Kakkonen, T., E. Sutinen, and J. Timonen. Noise reduction in LSA-based essay assessment. in Proceedings of the 5th WSEAS International Conference on Simulation, Modeling and Optimization (SMO’05). 2005.
16. Wild, F., et al., Parameters driving effectiveness of automated essay scoring with LSA, in Proceedings of the 9th CAA Conference. 2005: Loughborough: Loughborough University. p. 485-494.
17. Berry, M.W., S.T. Dumais, and G.W. O′Brien, Using linear algebra for intelligent information retrieval. SIAM review, 1995. 37(4): p. 573-595.
18. Han, J., M. Kamber, and J. Pei, Data mining: concepts and techniques. 2006: Morgan kaufmann.
19. Han, J. and M. Kamber, Data mining: concepts and techniques (the Morgan Kaufmann Series in data management systems). 2000.
20. Borgelt, C. and R. Kruse, Induction of association rules: Apriori implementation, in Compstat. 2002, Physica-Verlag HD: Germany. p. 395-400.
21. Agrawal, R., T. Imieliński, and A. Swami. Mining association rules between sets of items in large databases. in ACM SIGMOD Record. 1993. ACM.
22. Yin-Fu, H. and L. San-Des. Applying Multidimensional Association Rule Mining to Feedback-Based Recommendation Systems. in Advances in Social Networks Analysis and Mining (ASONAM), 2011 International Conference on. 2011.
23. Ribeiro, M.X., et al. Statistical Association Rules and Relevance Feedback: Powerful Allies to Improve the Retrieval of Medical Images. in Computer-Based Medical Systems, 2006. CBMS 2006. 19th IEEE International Symposium on. 2006.
24. Agrawal, R. and R. Srikant. Fast algorithms for mining association rules. in Proc. 20th int. conf. very large data bases, VLDB. 1994.
25. Cortes, C. and V. Vapnik, Support-vector networks. Machine learning, 1995. 20(3): p. 273-297.
26. Sebastiani, F., Machine learning in automated text categorization. ACM computing surveys (CSUR), 2002. 34(1): p. 1-47.
27. Chang, C.C. and C.J. Lin. LIBSVM --A Library for Support Vector Machines. Available from: http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
28. Lemur Project. Available from: http://www.lemurproject.org/.
29. MathWorks. 1994-2014; Available from: http://www.mathworks.com/products/matlab/.
|