博碩士論文 101522026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:100 、訪客IP:3.147.53.90
姓名 蔡育程(Yu-cheng Cai)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 結合 AdaBoost與 SVM 分類器的單眼視覺行人偵測
(Combining AdaBoost and SVM classifiers for monocular-vision pedestrian detection)
相關論文
★ 適用於大面積及場景轉換的視訊錯誤隱藏法★ 虛擬觸覺系統中的力回饋修正與展現
★ 多頻譜衛星影像融合與紅外線影像合成★ 腹腔鏡膽囊切除手術模擬系統
★ 飛行模擬系統中的動態載入式多重解析度地形模塑★ 以凌波為基礎的多重解析度地形模塑與貼圖
★ 多重解析度光流分析與深度計算★ 體積守恆的變形模塑應用於腹腔鏡手術模擬
★ 互動式多重解析度模型編輯技術★ 以小波轉換為基礎的多重解析度邊線追蹤技術(Wavelet-based multiresolution edge tracking for edge detection)
★ 基於二次式誤差及屬性準則的多重解析度模塑★ 以整數小波轉換及灰色理論為基礎的漸進式影像壓縮
★ 建立在動態載入多重解析度地形模塑的戰術模擬★ 以多階分割的空間關係做人臉偵測與特徵擷取
★ 以小波轉換為基礎的影像浮水印與壓縮★ 外觀守恆及視點相關的多重解析度模塑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著民眾車輛的增加,交通事故案件也跟著增多;交通事故已經成為影響大眾生命安全的一個重大問題。由於駕駛人的分心或疏忽而碰撞路上行人時有所聞;因此,我們在本研究中提出了一個使用單眼電腦視覺的行人偵測系統,應用於一般街道巷弄和校園中,作為警示駕駛人的行車輔助系統,以避免行人碰撞的交通事故。
我們所提的行人偵測系統主要分為三個步驟:一、使用行人偵測帶 (pedestrian detection strip, PDS) 計算影像中前景物的位置,定義出候選物件視窗;二、對各個視窗比對行人輪廓模板,找出疑似有行人物件的視窗做後續的驗證,以減少大量分類的計算;三、使用梯度方向分佈圖 (histograms of oriented gradients, HOG) 描述行人特徵,並在分類決策上,使用支援向量機 (support vector machine, SVM) 針對行人樣本中的九個區域各別學習訓練做為分類器。最後再使用 AdaBoost 組合這些分類器,分別學習權重,作為系統最後辨識行人的依據。各區域學習訓練的分類器可以減少因為視線角度與行人部分遮蔽的問題,可以針對行人各個輪廓各別判定,並透過 AdaBoost 來整合分類器的結果,使得整體分類能力有所提昇。
在實驗分析中,我們擷取實際一般街道與校園中的行車影片;其中包含多種日間時段與日照情形的影像。在物件偵測的步驟中,透過行人偵測帶的擷取前景物位置可達到99.6%的行人偵測率。輪廓模板比對可初步篩選掉70%以上的非行人視窗,而加速後續的AdaBoost-SVM確認程序。在使用相同的 HOG 特徵之下,本研究所提出的 AdaBoost 結合 SVM 在各種偵測環境下約有87%的偵測率與4%的誤判率;而僅使用SVM 的偵測率只有83%偵測率與7%誤判率;可說明本研究使用的分類器架構較能夠因應環境因素影響與外形多變的行人。最後系統在一般電腦運算上每秒約能執行20張影像的處理速度。
摘要(英) With the increase of public vehicles, traffic accidents increase also followed the case. Traffic accidents have become a major problem affecting the safety of the public, because the driver′s distraction or negligence collision pedestrians heard. Therefore, we propose a computer using a monocular vision pedestrian detection system in the study, applied to the general campus streets and alleys, using driving assistance systems as a reminder to driver, in order to avoid pedestrian collision accidents.
Our propose pedestrian detection system is divided into three steps: First, the use of pedestrian detection strip (PDS) to calculate the position of the image in the foreground objects, define the candidate object window. Second, each window would template matching for pedestrian silhouette to identify suspected pedestrian objects window to do the follow-up verification, in order to reduce the computational lot of classification. Third, using the histograms of oriented gradients (HOG) describe characteristics of pedestrians, and on the classification decision, the use of support vector machines (SVM) as a classifier for pedestrian samples nine regional individual learning and training. Finally, the combinations of these classifiers using AdaBoost were learning the weights, as a system based on the final identification of pedestrians. Training of regional learning classifiers can reduce the problem because the line of sight angle and pedestrians partially obscured can determine for each individual contour pedestrians to integrate through AdaBoost classifier results, making the overall classification ability has improved.
In the experimental analysis, we retrieve the actual streets and general campus traffic movie, which contains images with a variety of daytime sunshine circumstances. At step in object detection, object position by capturing of PDS can be achieved with detection rate of 99.6%. Template matching can filter out more than 70% of non-pedestrian window, and accelerate the subsequent AdaBoost-SVM confirmation process. Using the same HOG features, AdaBoost with multiple SVM proposed in this study is about 87% detection rate and false positive rate of 4% is detected in a variety of environments, and compare single SVM detection rate of only 83% to detect rate and false positive rate of 7%, can be explained classification framework used in this study can be compared with the response to environmental factors that affect the shape changing pedestrians. Finally, the system in general can perform computing approximately 20 images per second.
關鍵字(中) ★ 自適應增強
★ 支援向量機
★ 梯度方向分佈圖
★ 行人偵測帶
★ 模板比對
關鍵字(英) ★ AdaBoost
★ SVM
★ HOG
★ PDS
★ Template Matching
論文目次 摘要 i
目錄 i
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 研究動機 1
1.2 系統概述 1
1.3 論文架構 4
第二章 相關研究 5
2.1 ROI選取 5
2.2 輪廓比對 7
2.3 分類器 11
第三章 物件偵測 14
3.1 行人偵測帶 14
3.2 前景物選取 16
3.3 候選物件視窗 17
第四章 行人輪廓模板比對 19
4.1 行人輪廓模板 19
4.2 輪廓模板比對 21
第五章 行人確認 23
5.1 梯度方向分佈圖 23
5.1.1 HOG特徵計算方式 23
5.1.2 積分影像 27
5.2 SVM分類器 29
5.2.1 SVM簡介 29
5.2.2 訓練樣本 31
5.2.3 AdaBoost-SVM訓練 31
第六章 實驗結果與討論 36
6.1 實驗設備與架設環境 36
6.2 實驗與結果展示 37
6.3 不同環境狀況下的比較 42
第七章 結論以及未來展望 45
參考文獻 48
參考文獻 [1] Agarwal, S., A. Awan, and D. Roth, ′′Learning to detect objects in images via a sparse, part-based representation,′′ IEEE Trans. Pattern Analysis and Machine Intelligence, vol.26, no.11, pp.1475-1490, 2004.
[2] Ahonen, T., A. Hadid, and M. Pietikainen, ′′Face description with local binary patterns: application to face recognition,′′ IEEE Trans. Pattern Analysis and Machine Intelligence, vol.28, no.12, pp.2037-2041, 2006.
[3] Alonso, I. P., D. F. Llorca, and M. Á. Sotelo, ′′Combination of feature extraction methods for SVM pedestrian detection,′′ IEEE Trans. Intelligent Transportation System, vol.8, no.2, pp.292-307, 2007.
[4] An, T.-K. and M.-H. Kim, ′′A new diverse adaboost classifier,′′ in Proc. Int. Conf. Artificial Intelligence and Computational Intelligence, Sanya, China, Oct.23-24, 2010, pp.359-363.
[5] Andreone, L., F. Bellotti, A. D. Gloria, and R. Lauletta, ′′SVM-based pedestrian recognition on near-infrared images,′′ in Proc. 4th IEEE Int. Symp. on Image and Signal Processing and Analysis, Torino, Italy, Sep.15-17, 2005, pp.274-278.
[6] Bertozzi, M., A. Broggi, R. Chapuis, F. Chausse, A. Fascioli, and A. Tibaldi, ′′Shape-based pedestrian detection and localization,′′ in Proc. IEEE Int. Conf. Intelligent Transportation Systems, Shanghai, China, Oct.12-15, 2003, pp.328-333.
[7] Bertozzi, M., A. Broggi, A. Fascioli, T. Graf, and M.-M. Meinecke, ′′Pedestrian detection for driver assistance using multiresolution infrared vision,′′ IEEE Trans. Vehicular Technology, vol.53, no.6, pp.1666-1678, 2004.
[8] Bertozzi, M., A. Broggi, A. Lasagni, and M. D. Rose, ′′Infrared stereo vision-based pedestrian detection,′′ in Proc. IEEE Conf. Intelligent Vehicles Symp., Las Vegas, Nevada, Jun.6-8, 2005, pp.24-29.
[9] Broggi, A., R. I. Fedriga, and A. Tagliati, ′′Pedestrian detection on moving vehicle: an investigation about near infra-red images,′′ in Proc. IEEE Conf. Intelligent Vehicles Symp., Tokyo, Japan, Jun.13-15, 2006, pp.431-436.
[10] Broggi, A., P. Cerri, S. Ghidoni, P. Grisleri, and H. G. Jung, ′′A new approach to urban pedestrian detection for automatic braking,′′ IEEE Trans. Intelligent transportation systems, vol.10, no.4, pp.594-605, 2009.
[11] Burges, C. J. C., "A tutorial on support vector machines for pattern recognition," Data Mining Knowledge Discovery, vol.2, no.2, pp.121-167, 1998.
[12] Cao, X.-B., H. Qiao, and J. Keane, ′′A low-cost pedestrian-detection system with a single optical camera,′′ IEEE Trans. Intelligent transportation systems, vol.9, no.1, pp.58-67, 2008.
[13] Chen, C. H. and D. L. Yang, "Fast algorithm and its systolic realization for distance transformation," IEE Proc. Computers and Digital Techniques, vol.143, no.3, pp.168-173, 1996.
[14] Dalal, N. and B. Triggs, ′′Histograms of oriented gradients for human detection,′′ in Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, San Diego, CA, June 20-26, 2005, pp.886-893.
[15] Enzweiler, M. and D. M. Gavrila, ′′Monocular pedestrian detection: survey and experiments,′′ IEEE Trans. Pattern Analysis and Machine Intelligence, vol.31, no.12, pp.2179-2195, 2008.
[16] Fang, Y., K. Yamada, Y. Ninomiya, and I. Masaki, ′′A shape independent method for pedestrian detection with far-infrared images,′′ IEEE Trans. Vehicular Technology, vol.53, no.6, pp.1679-1697, 2004.
[17] Fardi, B., U. Schuenert, and G. Wanielik, ′′Shape and motion-based pedestrian detection in infrared images: a multisensor approach,′′ in Proc. IEEE Conf. Intelligent Vehicles Symp., Las Vegas, Nevada, Jun.6-8, 2005, pp.18-23.
[18] Freund, Y. and R. E. Schapire, ′′A decision-theoretic generalization of on-line learning and application to boosting,′′ Int. Journal of Computer and System Sciences, vol.55, no.1, pp.119-139, 1997.
[19] Gavrila, D. M. and V. Philomin, ′′Real-time object detection for smart vehicles,′′ in Proc. IEEE 7th Int. Conf. Computer Vision, Kerkyra, Greek, vol.1, sep.20-27, 1999, pp.87-93.
[20] Gavrila, D. M., ′′Pedestrian detection from a moving vehicle,′′ in Proc. 5th European Conf. Computer Vision, Dublin, Ireland, Jun.26-Jul.1, 2000, pp.37-49.
[21] Gavrila, D. M. and S. Munder, ′′Multi-cue pedestrian detection and tracking from a moving vehicle,′′ Int. Journal of Computer Vision, vol.73, no.1, pp.41-59, 2007.
[22] Gavrila, D. M., ′′A Bayesian exemplar-based approach to hierarchical shape matching,′′ IEEE Trans. Pattern Analysis and Machine Intelligence, vol.29, no.8, pp.1-14, 2007.
[23] Geronimo, D., A. D. Sappa, A. Lopez, and D. Ponsa, ′′Adaptive image sampling and windows classification for on-board pedestrian detection,′′ in Proc. IEEE 5th Int. Conf. Computer Vision, Bielefeld, Germany, Mar.21-24, 2007, pp.1-10.
[24] Geronimo, D., A. M. Lopez, A. D. Sappa, and T. Graf, ′′Survey of pedestrian detection for advanced driver assistance systems,′′ IEEE Trans. Pattern Analysis and Machine Intelligence, vol.32, no.7, pp.1239-1258, 2010.
[25] Hao, Z., B. Wang, and J. Teng, ′′Fast pedestrian detection based on adaboost and probability template matching,′′ in Proc. IEEE 5th Int. Conf. Advanced Computer Control, Shenyang, China, vol.2, Mar.27-29, 2010, pp.390-394.
[26] Hussain, M., S.-K. Wajjd, A. Elzaart, and M. Berbar, "A comparison of SVM kernel functions for breast cancer detection," in Proc. IEEE Int. Conf. Computer Graphics, Imaging and Visualization, Singapore, Aug.17-19, 2011, pp.145-150.
[27] Linzmeier, D. T., M. Skutek, M. Mekhaiel, and K. Dietmayer, ′′A pedestrian detection system based on thermopile and radar sensor data fusion,′′ in Proc. IEEE Conf. Information Fusion, Philadelphia, PA, Jul.25-28, 2005, pp.1272-1279.
[28] Ma, G., D. Muller, S.-B. park, S. Muller-Schneiders, and A. Kummert, ′′pedestrian detection using a single monochrome camera,′′ IET Intelligent Transport Systems, vol.3, pp. 42-56, March 2009.
[29] Ma, G., S.-B. Park, A. Ioffe, S.-M. Schneiders, and A. Kummert, "A real time object detection approach applied to reliable pedestrian detection," in Proc. IEEE Conf. Intelligent Vehicles Symp., Istanbul, Turkey, Jun.13-15, 2007, pp.755-760.
[30] Mahalingam, G. and C. Kambhamettu, ′′Face verification with aging using adaboost and local binary patterns,′′ in Proc. India Conf. Graphics and Image Processing, Chennai, India, Dec.12-15, 2010, pp.101-108.
[31] Mahlisch, M., M. Oberlander, O. Lohlein, D. M. Gavrila, and W. Ritter, ′′A multiple detector approach to low-resolution FIR pedestrian recognition,′′ in Proc. IEEE Conf. Intelligent Vehicles Symp., Las Vegas, Nevada, Jun.6-8, 2005, pp.325-330.
[32] Mohan, A., C. Papageorgiou, and T. Poggio, ′′Example-based object detection in images by components,′′ IEEE Trans. Pattern Analysis and Machine Intelligence, vol.23, no.4, pp.349-361, 2001.
[33] Nishida, K. and T. Kurita, ′′Boosting soft-margin SVM with feature selection for pedestrian detection,′′ in Proc. Int. Workshop on Multiple Classifier Systems, Seaside, CA, June.13-15, 2005, pp.22-31.
[34] Papageorgiou, C. and T. Poggio, ′′A trainable system for object detection,′′ Int. Journal of Computer Vision, vol.31, no.1, pp.15-33, 2000.
[35] Shashua, A., Y. Gdalyahu, and G. Hayun, "Pedestrian detection for driving assistance systems: single-frame classification and system level performance," in Proc. IEEE Conf. Intelligent Vehicles Symp., Parme, Italy, Jun.14-17, 2004, pp.1-6.
[36] Shashua, A., Y. Gdalyahu, and G. Hayun, Pedestrian Detection, U.S. Patent, No. 20070230792A1, Oct. 4, 2007.
[37] Suard, F., A. Rakotomamonjy, A. Bensrhair, and A. Broggi, ′′Pedestrian detection using infrared images and histograms of oriented gradients,′′ in Proc. IEEE Conf. Intelligent Vehicles Symp., Tokyo, Japan, June 13-15, 2004, pp.206-212.
[38] Sun, H., C. Hua, and Y. Luo, ′′A Multi-stage classifier based algorithm of pedestrian detection in night with a near infrared camera in a moving car,′′ in Proc. 3rd IEEE Int. Conf. Image and Graphics, Beijing, China, June 27-30, 2004, pp.120-123.
[39] Vapnik, V. N., The Nature of Statistical Learning Theory, Springer, Berlin, 1995.
[40] Viola, P. and M. Jones, ′′Robust real-time face detection,′′ Int. Journal of Computer Vision, vol.57, no.2, pp.137-154, 2004.
[41] Viola, P., M. Jones, and D. Snow, ′′Detecting pedestrians using patterns of motion and appearance,′′ Int. Journal of Computer Vision, vol.63, no.2, pp.153-161, 2005.
[42] Wang, X., T. X. Han, and S. Yan, "An HOG-LBP human detector with partial occlusion handling," in Proc. IEEE 12th Int. Conf. Computer Vision, Kyoto, Japan, Sep.29-Oct.2, 2009, pp.32-39.
[43] Wu, P., X.-B. Cao, Y.-W. Xu, and H. Qiao, ′′Representative template set generation method for pedestrian detection,′′ in Proc. 5th IEEE Int. Conf. Fuzzy Systems and Knowledge Discovery, Jinan, China, Oct.18-20, 2008, pp.101-105.
[44] Zhu, Q., A. Shai, M.-C. Yeh, and K.-T. Cheng, "Fast human detection using a cascade of histograms of oriented gradients," in Proc. IEEE Conf. Computer Vision and Pattern Recognition, New York, June 17-22, 2006, pp.1491-1498.
指導教授 曾定章 審核日期 2014-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明