參考文獻 |
[1] Agarwal, S., A. Awan, and D. Roth, ′′Learning to detect objects in images via a sparse, part-based representation,′′ IEEE Trans. Pattern Analysis and Machine Intelligence, vol.26, no.11, pp.1475-1490, 2004.
[2] Ahonen, T., A. Hadid, and M. Pietikainen, ′′Face description with local binary patterns: application to face recognition,′′ IEEE Trans. Pattern Analysis and Machine Intelligence, vol.28, no.12, pp.2037-2041, 2006.
[3] Alonso, I. P., D. F. Llorca, and M. Á. Sotelo, ′′Combination of feature extraction methods for SVM pedestrian detection,′′ IEEE Trans. Intelligent Transportation System, vol.8, no.2, pp.292-307, 2007.
[4] An, T.-K. and M.-H. Kim, ′′A new diverse adaboost classifier,′′ in Proc. Int. Conf. Artificial Intelligence and Computational Intelligence, Sanya, China, Oct.23-24, 2010, pp.359-363.
[5] Andreone, L., F. Bellotti, A. D. Gloria, and R. Lauletta, ′′SVM-based pedestrian recognition on near-infrared images,′′ in Proc. 4th IEEE Int. Symp. on Image and Signal Processing and Analysis, Torino, Italy, Sep.15-17, 2005, pp.274-278.
[6] Bertozzi, M., A. Broggi, R. Chapuis, F. Chausse, A. Fascioli, and A. Tibaldi, ′′Shape-based pedestrian detection and localization,′′ in Proc. IEEE Int. Conf. Intelligent Transportation Systems, Shanghai, China, Oct.12-15, 2003, pp.328-333.
[7] Bertozzi, M., A. Broggi, A. Fascioli, T. Graf, and M.-M. Meinecke, ′′Pedestrian detection for driver assistance using multiresolution infrared vision,′′ IEEE Trans. Vehicular Technology, vol.53, no.6, pp.1666-1678, 2004.
[8] Bertozzi, M., A. Broggi, A. Lasagni, and M. D. Rose, ′′Infrared stereo vision-based pedestrian detection,′′ in Proc. IEEE Conf. Intelligent Vehicles Symp., Las Vegas, Nevada, Jun.6-8, 2005, pp.24-29.
[9] Broggi, A., R. I. Fedriga, and A. Tagliati, ′′Pedestrian detection on moving vehicle: an investigation about near infra-red images,′′ in Proc. IEEE Conf. Intelligent Vehicles Symp., Tokyo, Japan, Jun.13-15, 2006, pp.431-436.
[10] Broggi, A., P. Cerri, S. Ghidoni, P. Grisleri, and H. G. Jung, ′′A new approach to urban pedestrian detection for automatic braking,′′ IEEE Trans. Intelligent transportation systems, vol.10, no.4, pp.594-605, 2009.
[11] Burges, C. J. C., "A tutorial on support vector machines for pattern recognition," Data Mining Knowledge Discovery, vol.2, no.2, pp.121-167, 1998.
[12] Cao, X.-B., H. Qiao, and J. Keane, ′′A low-cost pedestrian-detection system with a single optical camera,′′ IEEE Trans. Intelligent transportation systems, vol.9, no.1, pp.58-67, 2008.
[13] Chen, C. H. and D. L. Yang, "Fast algorithm and its systolic realization for distance transformation," IEE Proc. Computers and Digital Techniques, vol.143, no.3, pp.168-173, 1996.
[14] Dalal, N. and B. Triggs, ′′Histograms of oriented gradients for human detection,′′ in Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, San Diego, CA, June 20-26, 2005, pp.886-893.
[15] Enzweiler, M. and D. M. Gavrila, ′′Monocular pedestrian detection: survey and experiments,′′ IEEE Trans. Pattern Analysis and Machine Intelligence, vol.31, no.12, pp.2179-2195, 2008.
[16] Fang, Y., K. Yamada, Y. Ninomiya, and I. Masaki, ′′A shape independent method for pedestrian detection with far-infrared images,′′ IEEE Trans. Vehicular Technology, vol.53, no.6, pp.1679-1697, 2004.
[17] Fardi, B., U. Schuenert, and G. Wanielik, ′′Shape and motion-based pedestrian detection in infrared images: a multisensor approach,′′ in Proc. IEEE Conf. Intelligent Vehicles Symp., Las Vegas, Nevada, Jun.6-8, 2005, pp.18-23.
[18] Freund, Y. and R. E. Schapire, ′′A decision-theoretic generalization of on-line learning and application to boosting,′′ Int. Journal of Computer and System Sciences, vol.55, no.1, pp.119-139, 1997.
[19] Gavrila, D. M. and V. Philomin, ′′Real-time object detection for smart vehicles,′′ in Proc. IEEE 7th Int. Conf. Computer Vision, Kerkyra, Greek, vol.1, sep.20-27, 1999, pp.87-93.
[20] Gavrila, D. M., ′′Pedestrian detection from a moving vehicle,′′ in Proc. 5th European Conf. Computer Vision, Dublin, Ireland, Jun.26-Jul.1, 2000, pp.37-49.
[21] Gavrila, D. M. and S. Munder, ′′Multi-cue pedestrian detection and tracking from a moving vehicle,′′ Int. Journal of Computer Vision, vol.73, no.1, pp.41-59, 2007.
[22] Gavrila, D. M., ′′A Bayesian exemplar-based approach to hierarchical shape matching,′′ IEEE Trans. Pattern Analysis and Machine Intelligence, vol.29, no.8, pp.1-14, 2007.
[23] Geronimo, D., A. D. Sappa, A. Lopez, and D. Ponsa, ′′Adaptive image sampling and windows classification for on-board pedestrian detection,′′ in Proc. IEEE 5th Int. Conf. Computer Vision, Bielefeld, Germany, Mar.21-24, 2007, pp.1-10.
[24] Geronimo, D., A. M. Lopez, A. D. Sappa, and T. Graf, ′′Survey of pedestrian detection for advanced driver assistance systems,′′ IEEE Trans. Pattern Analysis and Machine Intelligence, vol.32, no.7, pp.1239-1258, 2010.
[25] Hao, Z., B. Wang, and J. Teng, ′′Fast pedestrian detection based on adaboost and probability template matching,′′ in Proc. IEEE 5th Int. Conf. Advanced Computer Control, Shenyang, China, vol.2, Mar.27-29, 2010, pp.390-394.
[26] Hussain, M., S.-K. Wajjd, A. Elzaart, and M. Berbar, "A comparison of SVM kernel functions for breast cancer detection," in Proc. IEEE Int. Conf. Computer Graphics, Imaging and Visualization, Singapore, Aug.17-19, 2011, pp.145-150.
[27] Linzmeier, D. T., M. Skutek, M. Mekhaiel, and K. Dietmayer, ′′A pedestrian detection system based on thermopile and radar sensor data fusion,′′ in Proc. IEEE Conf. Information Fusion, Philadelphia, PA, Jul.25-28, 2005, pp.1272-1279.
[28] Ma, G., D. Muller, S.-B. park, S. Muller-Schneiders, and A. Kummert, ′′pedestrian detection using a single monochrome camera,′′ IET Intelligent Transport Systems, vol.3, pp. 42-56, March 2009.
[29] Ma, G., S.-B. Park, A. Ioffe, S.-M. Schneiders, and A. Kummert, "A real time object detection approach applied to reliable pedestrian detection," in Proc. IEEE Conf. Intelligent Vehicles Symp., Istanbul, Turkey, Jun.13-15, 2007, pp.755-760.
[30] Mahalingam, G. and C. Kambhamettu, ′′Face verification with aging using adaboost and local binary patterns,′′ in Proc. India Conf. Graphics and Image Processing, Chennai, India, Dec.12-15, 2010, pp.101-108.
[31] Mahlisch, M., M. Oberlander, O. Lohlein, D. M. Gavrila, and W. Ritter, ′′A multiple detector approach to low-resolution FIR pedestrian recognition,′′ in Proc. IEEE Conf. Intelligent Vehicles Symp., Las Vegas, Nevada, Jun.6-8, 2005, pp.325-330.
[32] Mohan, A., C. Papageorgiou, and T. Poggio, ′′Example-based object detection in images by components,′′ IEEE Trans. Pattern Analysis and Machine Intelligence, vol.23, no.4, pp.349-361, 2001.
[33] Nishida, K. and T. Kurita, ′′Boosting soft-margin SVM with feature selection for pedestrian detection,′′ in Proc. Int. Workshop on Multiple Classifier Systems, Seaside, CA, June.13-15, 2005, pp.22-31.
[34] Papageorgiou, C. and T. Poggio, ′′A trainable system for object detection,′′ Int. Journal of Computer Vision, vol.31, no.1, pp.15-33, 2000.
[35] Shashua, A., Y. Gdalyahu, and G. Hayun, "Pedestrian detection for driving assistance systems: single-frame classification and system level performance," in Proc. IEEE Conf. Intelligent Vehicles Symp., Parme, Italy, Jun.14-17, 2004, pp.1-6.
[36] Shashua, A., Y. Gdalyahu, and G. Hayun, Pedestrian Detection, U.S. Patent, No. 20070230792A1, Oct. 4, 2007.
[37] Suard, F., A. Rakotomamonjy, A. Bensrhair, and A. Broggi, ′′Pedestrian detection using infrared images and histograms of oriented gradients,′′ in Proc. IEEE Conf. Intelligent Vehicles Symp., Tokyo, Japan, June 13-15, 2004, pp.206-212.
[38] Sun, H., C. Hua, and Y. Luo, ′′A Multi-stage classifier based algorithm of pedestrian detection in night with a near infrared camera in a moving car,′′ in Proc. 3rd IEEE Int. Conf. Image and Graphics, Beijing, China, June 27-30, 2004, pp.120-123.
[39] Vapnik, V. N., The Nature of Statistical Learning Theory, Springer, Berlin, 1995.
[40] Viola, P. and M. Jones, ′′Robust real-time face detection,′′ Int. Journal of Computer Vision, vol.57, no.2, pp.137-154, 2004.
[41] Viola, P., M. Jones, and D. Snow, ′′Detecting pedestrians using patterns of motion and appearance,′′ Int. Journal of Computer Vision, vol.63, no.2, pp.153-161, 2005.
[42] Wang, X., T. X. Han, and S. Yan, "An HOG-LBP human detector with partial occlusion handling," in Proc. IEEE 12th Int. Conf. Computer Vision, Kyoto, Japan, Sep.29-Oct.2, 2009, pp.32-39.
[43] Wu, P., X.-B. Cao, Y.-W. Xu, and H. Qiao, ′′Representative template set generation method for pedestrian detection,′′ in Proc. 5th IEEE Int. Conf. Fuzzy Systems and Knowledge Discovery, Jinan, China, Oct.18-20, 2008, pp.101-105.
[44] Zhu, Q., A. Shai, M.-C. Yeh, and K.-T. Cheng, "Fast human detection using a cascade of histograms of oriented gradients," in Proc. IEEE Conf. Computer Vision and Pattern Recognition, New York, June 17-22, 2006, pp.1491-1498.
|