博碩士論文 101521034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.220.154.41
姓名 周梓妘(Tzu-Yun Chou)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
(Implementation on Low Power CMOS Voltage Controlled Oscillator Using Magnetically Coupled Transformer for K-band Applications)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製
★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製★ 應用於 5-11 GHz寬頻低雜訊放大器與5 GHz/11 GHz雙頻低雜訊放大器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文利用tsmcTM提供的0.18-um CMOS 與90-nm CMOS製程實現操作於微波K頻段之低功耗壓控振盪器。本論文將介紹與探討壓控振盪器之雜訊生成機制,並應用多樣的磁耦合變壓器設計於低功耗之操作,以改善相位雜訊,並且以實作的量測結果驗證電路理論設計之正確性。
其設計內容包括三個壓控振盪器如下:
一、設計一應用耦合變壓器技術之低功耗互補式壓控振盪器,使用閘極電感增加迴路增益,使振盪條件更容易達成,使用tsmcTM 0.18-μm CMOS製程,其振盪頻率為23.46 GHz,可調頻率範圍600 MHz,偏移主頻率1 MHz之相位雜訊為-100.23 dBc/Hz。在供電壓1.4 V下,功率消耗為8.95 mW,輸出功率為 -11.29 dBm。計算優化參數為(FOM)為-176.18 dBc/Hz,晶片面積為0.405 mm2。
二、設計一應用磁耦合變壓器之低功耗雙共振腔壓控振盪器,將交流信號經過磁耦合變壓器之倍率放大效果,提升輸出擺信號,優化相位雜訊特性,使用tsmcTM 90-nm CMOS製程,其振盪頻率為23.99 GHz,可調頻率範圍400 MHz,偏移主頻率1 MHz之相位雜訊為-97.61 dBc/Hz。在供電壓0.7 V下,功率消耗僅1.61 mW,輸出功率為-7.16 dBm。計算優化參數為(FOM)為-183.14 dBc/Hz,晶片面積為0.476 mm2。
三、設計一應用磁耦合變壓器之低功耗正回授考畢茲壓控振盪器,利用正回授技術放大信號擺幅,並設計閘極與源極於相反之相位,使達到轉導提升之效果。使用tsmcTM 0.18-μm CMOS製程,其振盪頻率為22.87 GHz,可調頻率範圍800 MHz,偏移主頻率1 MHz之相位雜訊為-98.83 dBc/Hz。在供電壓1.1 V下,功率消耗僅3.63 mW,輸出功率為-11.34 dBm。計算優化參數為(FOM)為-180.4 dBc/Hz,晶片面積為0.446 mm2
摘要(英) A CMOS voltage controlled oscillator (VCO) with low power, high output power and good phase noise performance is the most challenging circuit due to low-Q passive component, lossy substrate, and low transconductance of the transistors, especially in microwave-wave frequency. Therefore, the use of low loss and high efficiency transformers is attractive especially in CMOS VCOs. The contents of this thesis are divided into five parts.
Chapter 1 gives the motivation of system applications. Chapter 2 introduces the basic theory and the phase noise mechanisms in voltage controlled oscillator (VCO). Chapter 3 presents several fully-integrated low power VCOs which were fabricated in tsmcTM 0.18-μm and 90-nm CMOS technologies. The focus of this chapter is the research of magnetically coupled transformer. Mgnetically coupled transformers can be exploited to enhance the oscillation amplitude and thus the supply voltage can be reduced for the same phase noise with low power consumption. Therefore, there were three low power and good performance VCOs have been designed by using mgnetically coupled transformers.
In the first design, a low-noise K-band complementary VCO using magnetically coupled transformer was fabricated in 0.18-µm CMOS technology for K-band applications. The start-up condition was more reliable by using the gate inductive peaking technique and magnetically coupled transformers. The measured oscillation central frequency is 23.46 GHz with the tunable frequency range from 23.46 to 24.07 GHz. The phase noise is -100.23 dBc/Hz at 1-MHz offset, and the maximum output power is -11.29 dBm. The total power consumption is 8.95 mW at 1.4-V supply voltage.The FOM is -176.18 dBc/Hz. The chip area, including pads, is 0.405 mm2.
In the second design, an ultra low-power and low-noise VCO using transformer coupled dual LC tanks topology was fabricated in 90-nm CMOS technology. The proposed transformer provides tight coupling factor between two LC tanks that improves the phase noise performance by increasing the output signal swing and waveform symmetry of the VCO. In addition, taking advantage of the tight-coupling transformer, the inductor layout is properly designed to obtain a high Q-factor and a die area comparable to single-inductor VCO. The measured oscillation central frequency is 23.99 GHz with the tunable frequency range from 23.6 to 23.99 GHz. The phase noise is -97.61 dBc/Hz at 1-MHz offset, and the maximum output power is -7.16 dBm. The total power consumption is 1.61 mW at 0.7-V supply voltage.The FOM is -183.14 dBc/Hz. The chip area, including pads, is 0.476 mm2.
In the third disign, a low-power and low-noise Colpitts VCO using trifilar-transformer feedback was fabricated in 0.18-µm CMOS technology. By exploiting the proposed positive-feedback Trifilar network, the required transconductance for the startup oscillation of Colpitts VCO can be reduced, leading to the minimized dc power for sustaining VCO oscillation.The measured oscillation central frequency is 22.83 GHz with the tunable frequency range from 22.8 to 23.6 GHz. The phase noise is -98.83 dBc/Hz at 1-MHz offset, and the maximum output power is -11.34 dBm. The total power consumption is 3.63 mW at 1.1-V supply voltage.The FOM is -180.4 dBc/Hz. The chip area, including pads, is 0.446 mm2.
Finally, the conclusion and future work are given in Chapter 4.
關鍵字(中) ★ 壓控振盪器 關鍵字(英) ★ Voltage Controlled Oscillator
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3 章節簡述 2
第二章 壓控振盪器 3
2-1 壓控振盪器簡介 3
2-2 振盪器基本操作原理 4
2-3 相位雜訊模型 5
2-3-1 線性非時變模型 (Leeson’s Model) 5
2-3-2 線性時變模型(Hajimiri’s Model) 7
第三章 應用磁耦合變壓器之K頻段低功耗壓控振盪器 13
3-1 磁耦合變壓器之簡介 13
3-2 K頻段簡介 17
3-3 研究現況 18
3-4 應用耦合變壓器技術之互補式壓控振盪器之研製 20
3-4-1 閘極電感峰化技術 20
3-4-2 應用耦合變壓器技術之互補式壓控振盪器設計 21
3-4-3 電路模擬與量測結果 26
3-4-4 結果比較與討論 31
3-5 應用磁耦合變壓器之雙共振腔壓控振盪器研製 33
3-5-1 磁耦合變壓器之輸出擺幅放大技術 33
3-5-2 應用磁耦合變壓器之K頻段低功耗雙共振腔壓控振盪器設計 35
3-5-3 電路模擬與量測結果 39
3-5-4 結果比較與討論 44
3-6 應用磁耦合雙變壓器之正回授考畢茲壓控振盪器研製 47
3-6-1 考畢茲架構簡介 47
3-6-2 磁耦合變壓器之電壓回授技術 49
3-6-3 應用磁耦合雙變壓器之正回授考畢茲壓控振盪器設計 51
3-6-4 電路模擬與量測結果 59
3-6-5 結果比較與討論 64
第四章 結論 66
4-1 結論 66
4-2 未來方向 67
參考文獻 68
參考文獻 [1] McKinsey Global Institute “Ten IT-enabled business trends for the decade ahead,” May, 2013.
[2] T. H. Lee, The Design of CMOS Radio-Freqency Integrated Circuits, 2nd ed. Cambridge, U. K.: Cambridge Univ. Press, 2004.
[3] B. Razavi, Design of Analog CMOS Integrated Circuits, 1st ed. McGraw-Hill Copanies, Inc., Aug. 2000.
[4] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proc. IEEE, vol. 54, no. 2, pp. 329-330, Feb. 1966.
[5] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
[6] H. Qiuting, “On the exact design of RF oscillators,” in IEEE Custom Integrated Circuits Conference, pp. 41-44, May 1998.
[7] T. Tokumitsu, “K-band and millimeter-wave MMICs for emerging commercial wireless applications,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 11, pp. 2066-2072, Nov. 2001.
[8] H. Hashemi, “Integrated concurrent multi-band radio and mutiple-antenna systems,” California Institute of Technology, California,Sep. 2003.
[9] J. R. Long, “Monolithic transformers for silicon RFIC design,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1368–1382, Sept. 2000.
[10] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Distributed active transformer–a new power-combining and impedance-transformation technique,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 316–331, Jan. 2002.
[11] H. Hashemi, “Integrated concurrent multi-band radios and multiple antenna systems,” Ph.D. dissertation, California Inst. Technol., Pasadena, 2003.
[12] M. Straayer, J. Cabanillas, and G. M. Rebeiz, “A low-noise transformer-based 1.7 GHz CMOS VCO,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 7-7, 2002, pp. 286-287.
[13] M. Demirkan, S. P. Bruss, and R. R. Spencer, “11.8 GHz CMOS VCO with 62% tuning range using switched coupled inductors,” in Proc. IEEE Radio Frequency Integrated Circuits Symp., June 3-5, 2007, pp. 401-404.
[14] Z. Safarian and H. Hashemi, “Wideband multi-mode CMOS VCO design using coupled Inductors,” IEEE Trans. Circuits and Syst. I: Reg. Papers, vol. 56, no. 8, pp. 1830-1843, Aug. 2009.
[15] X. Guan and A. Hajimiri, “ A 24 GHz CMOS front-end,” IEEE J. Solid-State Circuits, vol. 39, no.2, pp. 368–373, Feb. 2004.
[16] C.-C. Li, T.-P. Wang, C.-C. Kuo, M.-K. Chen, and W. Huei, “A 21 GHz complementary transformer coupled CMOS VCO,” IEEE Microw. Wireless Compon. Lett. , vol. 18, no. 4, pp. 278-280, 2008.
[17] S.-L. Liu, K.-H. Chen, C. Tsu, and A. Chin, “A low-power K-band CMOS VCO with four-coil transformer feedback,” IEEE Microw. Wireless Compon. Lett. , vol. 20, no. 8, pp. 459-461, 2010.
[18] J. Yang, C.-Y. Kim, D.-W. Kim, and S. Hong, “Design of a 24-GHz CMOS VCO with an asymmetric-width transformer,” IEEE Trans. Circuits and Syst. II: Exp. Briefs, vol. 57, no. 3, pp. 173–177, Mar. 2010.
[19] T.-P. Wang, “A K-band low-power Colpitts VCO with voltage-to-current positive-feedback network in 0.18-μm CMOS,” IEEE Microw. Wireless Compon. Lett. , vol. 21, no. 4, pp. 218-220, Apr. 2011.
[20] S.-L. Liu, X.-C.Tian, H. Yue, and A. Chin, “A bias-varied low-power K-band VCO in 90 nm CMOS technology,” IEEE Microw. Wireless Compon. Lett. , vol. 22, no. 6, pp. 321-323, June 2012.
[21] K.-C. Kwok and H. C. Luong, “Ultra-low-Voltage high-performance CMOS VCOs using transformer feedback,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp.652-660,Mar. 2005.
[22] J.-A. Hou and Y.-H. Wang, “A 7.9 GHz low-power PMOS Colpitts VCO using the gate inductive feedback,” IEEE Microw. Wireless Compon. Lett. , vol. 20,no. 4, pp.223-225, April 2010.
[23] P. Andreani and A. Fard, “More on the 1/f phase noise performance of CMOS differential-pair LC-tank oscillators,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2703-2712, Dec. 2006.
[24] C.-C. Wang, H.-C. Chiu, and Y.-T. Yang, “A novel compact complementary Colpitts differential CMOS VCO with low phase-noise performance,” in Proc. IEEE Radio Frequency Integrated Circuits Symp., Jun. 17, 2008, pp. 541-544.
[25] C.-A. Lin, J.-L. Kuo, K.-Y. Lin, and W. Huei, “A 24 GHz low power VCO with transformer feedback,” in Proc. IEEE Radio Frequency Integrated Circuits Symp., Jun. 7–9, 2009, pp. 75-78.
[26] T.-P. Wang., “A CMOS Colpitts VCO using negative-conductance boosted technology,” IEEE Trans. Circuits and Syst. I: Reg. Papers, vol. 58, no. 11, pp. 2623-2635, Nov. 2011.
[27] T.-Y. Lian, K.-H. Chien, and H.-K. Chiou, “An improved gm-boosted technique for a K-band cascode Colpitts CMOS VCO,” in IEEE Microwave Conference Proceedings (APMC), Nov. 2013, pp. 685-687.
[28] Y.-H. Chen, H.-H. Hsieh, and L.-H. Lu, “A 24-GHz receiver frontend with an LO signal generator in 0.18-µm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 5, pp. 1043-1051, May 2008.
[29] T.-N. Nguyen and J.-W. Lee, “A K-band CMOS differential Vackar VCO with the gate inductive feedback,” IEEE Trans. Circuits and Syst. II: Exp. Briefs, vol. 59, no. 5, pp. 257-261, May 2012.
[30] J.-H. Tsai and J.-P. Chou, “A K-band low-power CMOS transformer-feedback VCO,” in IEEE Radio and Wireless Symposium (RWS), Jan. 2013, pp. 295-297.
[31] 梁可俊,「以脈衝靈敏函數分析壓控振盪器之相位雜訊特性與K頻段差動低雜訊放大器之研製」,國立中央大學,碩士論文,民國96年。
[32] 李俊家,「Ku/K頻段壓控振盪器與Ku頻段注入鎖定式除頻器之研製」,國立中央大學,碩士論文,民國99年。
[33] 陳建盈,「應用fT -倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製」,國立中央大學,碩士論文,民國102年。
[34] 郭晉瑋,「應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製」,國立中央大學,碩士論文,民國102年。
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2014-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明