博碩士論文 101521089 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.142.135.86
姓名 連映琦(Ying-chi Lien)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 用於生理訊號擷取系統之自動化類比設計平台
(Automatic Analog Synthesis Platform for Bio-signal Acquisition System)
相關論文
★ 運算放大器之自動化設計流程及行為模型研究★ 高速序列傳輸之量測技術
★ 使用低增益寬頻率調整範圍壓控震盪器 之1.25-GHz八相位鎖相迴路★ 類神經網路應用於高階功率模型之研究
★ 使用SystemC語言建立IEEE 802.3 MAC 行為模組之研究★ 以回填法建立鎖相迴路之行為模型的研究
★ 高速傳輸連結網路的分析和模擬★ 一個以取樣方式提供可程式化邏輯陣列功能除錯所需之完全觀察度的方法
★ 抑制同步切換雜訊之高速傳輸器★ 以行為模型建立鎖相迴路之非理想現象的研究
★ 遞迴式類神經網路應用於序向電路之高階功率模型的研究★ 用於命題驗証方式的除錯協助技術之研究
★ Verilog-A語言的涵蓋率量測之研究★ 利用類神經模型來估計電源線的電流波形之研究
★ 5.2GHz CMOS射頻接收器前端電路設計★ 適用於OC-192收發機之頻率合成器和時脈與資料回復電路
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 現今積體電路應用層面越來越廣泛,使得電路設計複雜度和需求日漸增高,所要考慮的設計條件也跟著變多。在健康照護的應用中,生理訊號擷取是偵測疾病相當重要的一環,然而,生理訊號相當微弱,很容易受到雜訊影響導致難以判讀,如何去降低雜訊對原始訊號的干擾,對生醫系統設計來說是一門重要的課題。本論文提出一套考量雜訊效應的類比電路系統自動化設計帄台,在電路尺寸調整流程中,加入相關雜訊的計算,並使用雜訊指數作評估,盡量降低電路受到雜訊的影響,最後可經由操作客製化的圖形介面,快速得到相對應的電路設計與電路佈局。整套自動化 類比設計平台在LINUX上實現,在線性規劃(linear programming)的部分用CPLEX來找尋最佳解,而在自動產生電路佈局上則是以C/C++及Tcl/Tk程式語言實現,並能在Laker環境下自動化完成佈局的過程。由模擬結果及晶片量測的數據觀察可知,本工具自動合成的運算放大器可成功應用在生理訊號擷取系統上,在加入雜訊考量後,整體的雜訊也確實縮小了。
摘要(英) The integrated circuits of nowadays have more and more applications. More functionality increases the complexity of circuit design, which also increases the conditions that have to be considered in the design process. In health care application, the bio-signal acquisition system is important to diagnose the diseases. However, because the bio-signals are often very weak, they can be influenced by noise easily
and become hard to distinguish. How to reduce the noise impacts on bio-signals is important in bio-system design. In this thesis, an automatic analog synthesis platform is presented to generate the required system from specification to layout with noise consideration. Noise Factor (NF) is introduced in the proposed circuit sizing flow to evaluate the noise impact and guide the optimization toward noise reduction. Finally,with a friendly Graphical User Interface (GUI), the required design and its corresponding layout can be generated in seconds. The whole synthesis platform has
been implemented in Linux with the optimization tool CPLEX, incorporating with an automatic layout generation platform implemented with C/C++ and Tcl/Tk on Laker. According to the simulation and chip measurement results, the automatically synthesized OPA can be used in the bio-signal acquisition system successfully. With noise consideration, the overall noise is also greatly reduced in noise simulation.
關鍵字(中) ★ 設計自動化
★ 電路合成
關鍵字(英)
論文目次 摘要.....................................i
Abstract................................ii
目錄.....................................iv
圖目錄....................................vi
表目錄....................................ix
第一章、緒論................................1
1-1 研究動機................................1
1-2 相關研究................................4
1-2-1 考慮雜訊於電路設計......................4
1-2-2 考慮佈局效應之類比設計自動化工具...........5
1-3 問題定義................................6
1-4 論文結構................................7
第二章、背景知識..............................8
2-1 電路架構.................................8
2-1-1 兩級式運算放大器........................9
2-1-2 儀表放大器.............................10
2-1-3 濾波電路...............................10
2-1-4 放大電路...............................12
2-1-5 類比緩衝器.............................12
2-2 電壓驅動設計方法..........................13
2-2-1 gm/ID方法.............................14
2-2-2 限制條件與目標函數.......................18
2-2-3 取得電晶體尺寸..........................20
2-2-4 電壓驅動設計流程.........................21
2-3 佈局環境介紹..............................22
2-3-1 Laker軟體和Tcl/Tk語法...................22
2-3-2 電晶體.................................23
2-3-3 電阻和電容..............................24
第三章、雜訊考量...............................26
3-1 雜訊型態..................................26
3-1-1 熱雜訊.................................26
3-1-2 閃爍雜訊................................28
3-1-3 電路中雜訊的表示.........................29
3-2 單級放大器雜訊分析..........................30
3-3兩級式運算放大器雜訊分析......................31
3-3-1 第一級雜訊..............................32
3-3-2 第二級雜訊..............................34
3-4 目標函數...................................35
3-4-1 面積目標函數..............................35
3-4-2 雜訊指數目標函數...........................36
第四章、圖形化使用者介面...........................38
第五章、實驗結果與分析............................46
5-1 實驗環境....................................46
5-2 實驗結果....................................47
5-2-1實驗數據...................................47
5-2-2晶片下線量測結果......................,......48
第六章、結論和未來研究方向..........................53
第七章、參考文獻..................................54
參考文獻 [1]R. A. Rutenbar, G. G. E. Gielen, and J. Roychowdhury, “Hierarchical Modeling, Optimization, and Synthesis for System-Level Analog and RF Designs,” Proc. of the IEEE, vol. 95, no. 3, pp. 640-669, Mar. 2007.
[2]F. El-Turky and E.E. Perry, “BLADES: An Artificial Intelligence Approach to Analog Circuit Design,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 8, no. 6, pp. 680-692, Jun. 1989.
[3]J. Mahattanakul and J. Chutichatuporn, “Design Procedure for Two-Stage CMOS Op-Amp with Flexible Noise-Power Balancing Scheme,” IEEE Trans. on Circuits and Systems-I: Regular Papers, vol. 52, no. 8, pp. 1508-1514, Aug. 2005.
[4]Shuenn-Yuh Lee, and Chih-Jen Cheng, “Systematic Design and Modeling of a OTA-C Filter for Portable ECG Detection,” IEEE Trans. on Biomedical Circuits and Systems, vol. 3, no. 1, pp. 53-64, Feb. 2009.
[5]Y.-C. Liao, Y.-L. Chen, X.-T. Cai, C.-N. Jimmy Liu, and T.-C. Chen, “LASER: layout-aware analog synthesis environment on laker,” Proc. ACM International Conference on Great Lakes Symposium on VLSI, pp. 107-112, 2013.
[6] C.-W. Lin, P.-D. Sue, Y.-T. Shyu and S.-J. Chang, “A Bias-Driven Approach for Automated Design of Operational Amplifiers,” Proc. Int’l Symp. on VLSI Design, Automation, and Test, pp. 119-121, 2009.
[7] M. Ranjan, W. Verhaegen, A. Agarwal, H. Sampath, R. Vemuri, G. Gielen, “Fast, Layout-Inclusive Analog Circuit Synthesis using Pre-Compiled Parasitic-Aware Symbolic Performance Models,” Proc. Design, Automation and Test in Europe, pp. 604-609, 2004.
[8]G. Zhang, A. Dengi, R. A. Rohrer, R. A. Rutenbar, L. R. Carley, “A Synthesis Flow Toward Fast Parasitic Closure For Radio-Frequency Integrated Circuits,” Proc. Design Automation Conference, pp. 155–158, 2004.
[9] R. Castro-López, O. Guerra, E. Roca, and F. V. Fernández, “An Integrated Layout-Synthesis Approach for Analog ICs,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 7, pp. 1179-1189, Jul. 2008.
[10] H. Habal and H. Graeb, “Constraint-Based Layout-Driven Sizing of Analog Circuits,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 8, pp. 1089-1102, Aug. 2011.
[11]K. Lampaert, D. Garrod, R. Rutenbar, and L. Carley, “Koan/Anagram II: New Tools for Device-Level Analog Placement and Routing,” IEEE J. Solid-State Circuits, vol. 26, no. 3, pp. 330-342, Mar. 1991.
[12]L. Zhang, U. Kleine and Y. Jiang, “An automated design tool for analog layouts,” IEEE Trans. on Very Large Scale Integration System, vol.14, no. 8, pp. 881-894, Aug. 2006.
[13] E. Yilmaz, Günhan Dündar “Analog Layout Generator for CMOS Circuits,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 8, pp. 32-45, Jan. 2009.
[14]A. Agarwal and R. Vemuri, “Layout-Aware RF Circuit Synthesis Driven by Worst Case Parasitic Corners,” IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD), 2005.
[15]L. Zhang, N. Jangkrajarng, S. Bhattacharya, and C.-J. Richard Shi, “Parasitic-Aware Optimization and Retargeting of Analog Layouts: A Symbolic-Template Approach,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 5, pp. 791- 802, May 2008.
[16]K. Lampaert, G. Gielen, and W. Sansen, “Analog Layout Generation for Performance and Manufacturability,” Boston, MA: Kluwer, 1999.
[17]T. Sen, “Yet another simulation based sensitivity analysis tool for analog layout generation,” M.S. thesis, Bogaziçi Ünivertisesi, Istanbul, Turkey, 2007.
[18]Y.-F. Cheng, L.-Y. Chan, Y.-L. Chen, Y.-C. Liao, and C.-N. Jimmy Liu, “A Bias-Driven Approach to Improve the Efficiency of Automatic Design Optimization for CMOS OP-Amps,” Proc. Asia Symposium on Quality Electronic Design, pp. 59-63, 2012.
[19]W. Gao and R. Hornsey, “A Power Optimization Method for CMOS Op-Amps Using Sub-Space Based Geometric Programming,” Proc. Design, Automation and Test in Europe, pp. 508-513, 2010.
[20]Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill Higher Education, 2001.
[21]R.A Rutenbar., “Emerging Tools for Analog & Mixed-Signal: The Role of Synthesis and Analog Intellectual Property,” DATE master course, 2003.
[22]ILOG CPLEXTM from IBM, http://www.ilog.com/products/cplex/
[23]LakerTM from Synopsys, http://www. synopsys.com
[24]許家綾, “具備內建樣板之鎖相迴路佈局自動化軟體,” 國立中央大學電機工程研究所碩士論文, July 2011.
[25]吳宛蓉, “提升可撓式薄膜電晶體之類比電路可靠度的快速自動化設計方法,” 國立中央大學電機工程研究所碩士論文, July 2012.
[26]廖于晴, “考慮佈局效應的類比設計自動化工具,” 國立中央大學電機工程研究所碩士論文, July 2013.
[27]黃振洋, “應用於無線區域網路與寬頻帶系統之低雜訊放大器設計,” 國立中央大學電機工程研究所碩士論文, June 2005.
[28]HSPICE® User Guide, Release F-2011.09
指導教授 劉建男(Chien-Nan Liu) 審核日期 2014-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明