博碩士論文 101521033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:63 、訪客IP:3.144.101.75
姓名 邵致穎(Jhih-Ying Shao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 吸收式帶止濾波器之研製
(The Design of Absorptive Bandstop Filter)
相關論文
★ 用於行動上網裝置之智慧型陣列天線★ 一維及二維切換式波束掃描陣列天線
★ 寬頻微型化六埠網路接收機★ 具有良好選擇度的寬頻吸收式帶止濾波器
★ 微小化吸收式帶止濾波器之通帶改善★ 共面波導帶通濾波器之研製
★ 微帶耦合線帶通濾波器與雙工器研製★ 宇宙微波背景輻射陣列望遠鏡接收機 之校準信號源研製
★ K-Band及Q-Band毫米波帶通濾波器設計★ 薄膜製程射頻被動元件設計
★ 微波帶通低雜訊放大器設計★ 積體式微波帶通濾波器之研製
★ 應用於高位元率無線傳輸系統之V頻段漸進式開槽天線陣列★ 以多重耦合線實現多功能帶通濾波器
★ 以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統★ 以多重耦合線實現單端至平衡帶通濾波器之分析與設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文利用砷化鎵積體電路製程來實現單晶片吸收式帶止濾波器,以配合發展ALMA (Atacama Large Millimeter/Submillimeter Array) Band-1無線電波天文望遠鏡接收機。此帶止濾波器可吸收接收機中混波器的LO至RF洩漏訊號,從而降低LO至RF路徑之隔離度不佳所造成之混波器轉換增益變差的問題。
論文的第一部分將著重於新式吸收式帶止濾波器設計方法,並提出一套完整的設計流程及公式。有別於先前文獻利用多重耦合架構造成止帶訊號相消而產生吸收式止帶效果,本研究於帶止濾波器之共振器中引入適當電阻,有效地消耗掉反射訊號,達成吸收式止帶,並以一個三階吸收式帶止濾波器設計,驗證所提之設計流程與設計公式。濾波器之中心頻率為2 GHz、比例頻寬5%,並具有0.01dB等鏈波響應。實測之通帶內反射損耗均大於17.5 dB,止帶內最大穿透損耗大為33.3 dB,止帶最大功率損耗則為99.8%。
論文的第二部分則進行Q-Band吸收式帶止濾波器之研發,以應用於ALMA Band-1接收機系統中。其止帶範圍為31-33 GHz,比例頻寬約為7%,通帶範圍為35-52 GHz,並實現於穩懋半導體之0.15-m pHEMT製程,晶片面積為2.5mm×2 mm。由量測結果,於止帶中濾波器可吸收至少93.4%的LO至RF洩漏訊號,止帶中心頻(32GHz)之抑止度可達35.6 dB;通帶範圍內最大穿透損耗為2.44 dB,最小反射損耗為15.23 dB。又為提昇鏡相頻帶之抑制效果,另將吸收式帶止濾波器與寬頻帶通濾波器整合於單一晶片上,以利實現高度積體化與高整合度的接收機。
相較於既有文獻,本論文所提出之新式吸收式帶止濾波器具有更高的設計彈性,包括止帶頻寬、止帶頻率選擇度及通帶內鏈波均可依所需規格設計,並提出一整套簡潔明瞭的設計流程做為設計工具,可依據系統規格快速求算設計參數,有助於推展吸收式帶止濾波器於收發機系統之應用。
摘要(英) In this study, in order to cooperate with the development of ALMA (Atacama Large Milli- meter/Submillimeter Array) Band-1 receiver front-end, novel absorptive bandstop filter (ABSF) implemented using GaAs semiconductor process is proposed. The proposed ABSF can help minimize the impact of LO-to-RF leakage on the conversion loss degradation of mixer in the ALMA Band-1 receiver.
First, novel design method of ABSF is proposed and a complete design procedure and formulae are established. The proposed ABSF structure is based on introducing resistor to the bandstop resonator appropriately so as to dissipate the reflected signals in the stopband. The design of a 3rd-order ABSF is presented to demonstrate the achieved performance, and it is used for verifying the proposed design formulas. The ABSF is designed with a fractional bandwidth of 5% and a center frequency of 2 GHz. The measured return loss is better than 17.92 dB in the passband. The measured rejection at stopband center frequency is 34.83 dB, and the maximum stopband power dissipation is 99.8%.
Second, the Q-Band ABSF for ALMA Band-1 receiver application is proposed. The stopband frequency is from 31 to 33 GHz, which corresponds to a stopband fractional bandwidth of about 7%. The passband frequency is from 35 to 52 GHz. The ABSF is implemented in GaAs using the WIN 0.15 um pHEMT process, and the chip size is 2.5 mm×2 mm. In the measured results, more than 93.4% of the power within the stopband can be dissipated by the proposed ABSF, and the rejection at the stopband center frequency is 35.6 dB. The insertion loss is better than 2.44 dB and the return loss is better than 15.23 dB in the passband. To facilitate the receiver system integration, the proposed ABSF is then integrated with the bandpass filter on the same chip.
Compared with other related previous works, the proposed ABSF features a complete and simple design procedure with better design flexibility. The stopband bandwidth, filter selectivity and passband ripple can all be designed according to the specifications. The proposed ABSF is easy to realize such that it is helpful for applications in front-end receiver designs.
關鍵字(中) ★ 吸收式帶止濾波器
★ 毫米波
★ 無反射
關鍵字(英) ★ Absorptive bandstop filter
★ Millimeter-wave
★ Reflectionless
論文目次 論文摘要 I
Abstract II
致謝 III
目錄 IV
圖形列表 VI
表格列表 VIII
第一章 緒論 1
1. 1 研究動機 1
1. 2 文獻回顧 2
1. 3 章節介紹 4
第二章 四分之一波長共振器吸收式帶止濾波器設計 5
2. 1 電路架構 5
2. 2 電路設計 8
2. 2. 1 設計公式推導 8
2. 2. 2 設計理論驗證 12
2. 2. 3 參數調整與討論 18
2. 2. 4 電路實作及效能驗證 20
2. 3 設計參數對吸收式帶止濾波器特性之比較 30
2. 3. 1 頻寬對吸收式止帶特性之影響 30
2. 3. 2 階數對吸收式止帶特性之影響 32
2. 3. 3 通帶鏈波值對吸收式止帶特性之影響 34
2. 3. 4 電阻對吸收式止帶特性之影響 36
2. 4 總結 41
第三章 半波長共振器吸收式帶止濾波器 42
3. 1 L型半波長共振器吸收式帶止濾波器 42
3. 2 U型半波長共振器吸收式帶止濾波器 50
3. 3 共振器對吸收式帶止濾波器特性之影響 54
第四章 單晶化Q頻段吸收式帶止濾波器 58
4. 1 ALMA Band-1系統接收機之應用 58
4. 2 Q頻段吸收式帶止濾波器 60
4. 3 具吸收式止帶之帶通濾波器設計 66
4. 3. 1 砷化鎵版本 66
4. 3. 2 氧化鋁版本 71
4. 4 參考文獻比較與總結 78
第五章 結論 80
參考文獻 82
參考文獻 [1] D. R. Jachowski, “Passive enhancement of resonator Q in microwave notch filters,” in IEEE MTT-S Int. Microw. Symp. Dig., 2004, pp. 1315-1318.
[2] M. A. Morgan and T. A. Boyd, “Theoretical and experimental study of a new class of reflectionless filter,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1214–1221, May 2011.
[3] D. R. Jachowski, “Compact frequency-agile, absorptive bandstop filters,” in IEEE MTT-S Int. Microw. Symp. Dig., 2005, pp. 513-516.
[4] A. C. Guyette, I. C. Hunter, R. D. Pollard, and D. R. Jachowski, “Perfectly-matched bandstop filters using lossy resonators,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2005, pp. 517–520.
[5] J. Lee, T. C. Lee, and W. J. Chappell, “Lumped-element realization of absorptive bandstop filter with anomalously high spectral isolation,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 8, pp. 2424-2430, Aug. 2012.
[6] B. Kim, J. Lee, J. Lee, B. Jung, and W. J. Chappell, “RF CMOS integrated on-chip tunable absorptive bandstop filter using Q-tunable resonators,” IEEE Trans. Electron Device., vol. 60, no. 5, pp. 1730-1737, May 2013.
[7] T. Snow, J. Lee, and W. J. Chappell, “Tunable high quality-factor absorptive bandstop filter design,” in IEEE MTT-S Int. Microw. Symp. Dig., 2012.
[8] Y. Morimoto, T. Yuasa, T. Owada, and M. Miyazaki, “Multi-Harmonic Absorption Filter Using Quasi-Multilayered Striplines,” in IEEE MTT-S Int. Microw. Symp. Dig., 2014.
[9] G. L. Matthaei, L. Yong, and E. M. T. Jones, Microwave Filters Impedance- Matching Network and Coupling Structure, Artech House, 1980.
[10] J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/Micro-wave Applications. New York: Wiley, 2001.
[11] Y.-J. Hwang, C.-C. Chiong, Y.-F. Kuo, C.-C. Lin, C.-T. Ho, C.-C. Chuang, H.-Y. Chang, Y.-S. Lin, Z.-M. Tsai, and H. Wang, “Development of receiver and local oscillator components for Atacama Large Millimeter / submillimeter Array (ALMA) Band-1 in Taiwan,” in 2012 SPIE Astronomical Instrumentation and Telescope Conference, Amsterdam, the Netherlands, 2-6, July, 2012
[12] Y.-S. Lin, Y.-S. Hsieh, Y.-J. Hwang, C.-C. Chiong, “Q-band GaAs bandpass filter designs for ALMA band-1,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 353-355, June 2009.
[13] 謝育書, “K-Band及Q-Band毫米波帶通濾波器,” 碩士論文,國立中央大學, June 2008
[14] WIN Semiconductor Corporation. http://www.winfoundry.com.
指導教授 林祐生(Yo-Shen Lin) 審核日期 2014-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明