博碩士論文 101521025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.133.139.142
姓名 謝承軒(Cheng-hsuan Hsieh)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 氧化鋁/砷化銦鰭式場效電晶體之製作與特性分析
(Fabrication and Characterization of Al2O3/InAs Fin Field-Effect Transistors)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 砷化銦化合物半導體因其具備低能隙、高電子遷移率與高電子飽和速度,被視為低耗能電晶體的通道層材料選項之一,此三-五族材料的鰭狀電晶體架構,在未來有相當高的機會被應用在積體電路中。然而,目前高介電常數材料與三-五族半導體間的界面缺陷多寡是影響元件特性最關鍵的問題,因此,本論文中將提出適當地砷化銦表面處理方式,開發奈米級砷化銦鰭式場效電晶體,並探討其元件特性。
  本研究是以原子層沉積法成長的氧化鋁作為高介電常數材料,並於成長前藉由不同化學溶液對砷化銦的表面進行處理,同時搭配金屬沉積後的退火處理,修復氧化鋁與氧化鋁/砷化銦界面缺陷,最終提出一個合適的表面清理與熱退火處理方式,有效降低氧化鋁/砷化銦界面缺陷密度和氧化層缺陷密度。
  製作鰭式場效電晶體所使用之試片是以分子束磊晶法所成長,以砷化鎵為基板,銻化物為緩衝層及砷化銦為通道層。鰭式場效電晶體的製程技術開發包括:以電子束微影系統進行鰭式通道、歐姆接觸與閘極區域的定義,過程包含微影劑量、光阻形貌與金屬沉積後的形貌開發,同時引入BCB平坦化製程,解決奈米級元件的接觸窗口不易形成的問題。最後,本研究成功利用電子束微影技術開發出閘極長度為0.5 μm、源極至汲極距離為2 μm與有效鰭式通道寬度為60 nm之砷化銦表面通道鰭式場效電晶體。其元件之最大汲極電流密度為119 μA/μm,最大轉導值為77.2 μS/μm,臨界電壓為-2.37 V,汲極電流開關比為136以及次臨界擺幅為524 mV/decade。
摘要(英) Because of its narrow band gap, high electron mobility and high electron saturation velocity, InAs is considered a promising candidate for low power consumption field-effect transistors (FETs). Its fin field-effect transistors (FinFETs) might be used in the integrated circuits in the future. However, the interface traps at high-κ/III-V interface, which have significant negative influence on device performance, must be reduced before it can be used for practical applications. In this work, methods of surface treatment for InAs are studied. Nano-scale InAs FinFETs are also demonstrated and characterized.
  Al2O3 prepared by atomic layer deposition is used as the high-κ material in this study. Before the deposition, various chemical treatments on InAs surface and post metallization annealed are investigated. A proper treatment is proposed to minimize the interface trap density and oxide trap density.
  The InAs surface channel epi-wafers are grown on GaAs substrates with an Sb-based buffer layer by molecular beam epitaxy. The channel width, ohmic area and gate profile of the FinFETs are defined by electron-beam lithography. The effects of electron beam dosage on photoresist profile and metal profile are examined in this study. Benzocyclobutene planarization process is also employed in this nano-scale device. Al2O3/InAs FinFETs with a gate length of 0.5 μm, source to drain separation of 2 μm and fin width of 60 nm are successfully fabricated. A maximum drain current of 119 μA/μm, a maximum transconductance of 77.2 μS/μm, a threshold voltage of -2.37 V, a drain current on-off ratio of 136 and a sub-threshold swing of 524 mV/decade are obtained.
關鍵字(中) ★ 砷化銦
★ 氧化鋁
★ 金屬氧化物半導體電容
★ 鰭式場效電晶體
關鍵字(英) ★ InAs
★ Al2O3
★ MOSCAP
★ FinFET
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 導論 1
1.1 前言 1
1.2 研究動機 3
1.2.1 材料選擇 3
1.2.2 氧化層/半導體界面缺陷 6
1.2.3 鰭式場效電晶體優點 9
1.3 III-V族鰭式場效電晶體發展現況 11
1.4 論文架構 15
第二章 高介電常數氧化層與III-V族半導體界面研究 16
2.1 前言 16
2.2 原子層沉積系統與機制 16
2.3 氧化層缺陷電荷 19
2.4 砷化銦金屬-氧化物-半導體電容特性分析 22
2.4.1 元件製備流程 22
2.4.2 三甲基鋁表面處理 24
2.4.3 界面缺陷分佈與頻率響應特性 25
2.4.4 化學溶液表面處理之影響 27
2.4.5 退火溫度之影響 33
2.5 本章總結 41
第三章 鰭式場效電晶體製程技術開發 42
3.1 前言 42
3.2 主動區平台定義 47
3.3 鰭式通道的形成 48
3.3.1 負型光阻ma-N 2403定義鰭式通道 48
3.3.2 正型光阻PMMA-A2定義鰭式通道 50
3.4 歐姆接觸電極製作 51
3.5 次微米閘極金屬製作 52
3.6 苯並環丁烯回蝕刻製程 55
3.7 蒸鍍探針接觸電極 56
3.8 本章總結 58
第四章 鰭式場效電晶體特性分析 59
4.1 前言 59
4.2 磊晶結構設計與材料特性 59
4.3 鰭式場效電晶體之電氣特性 63
4.4 本章總結 69
第五章 結論 70
參考文獻 71
參考文獻 [1] A. Ali, H. Madan, A. Agrawal, I. Ramirez, R. Misra, J. B. Boos, B. R. Bennett, J. Lindemuth, and S. Datta, “Enhancement-Mode Antimonide Quantum-Well MOSFETs With High Electron Mobility and Gigahertz Small-Signal Switching Performance,” IEEE Electron Device Letters, vol. 32, no. 12, pp. 1689-1691, 2011.
[2] M. Bohr, “The evolution of scaling from the homogeneous era to the heterogeneous era,” IEEE International Electron Devices Meeting, pp. 1.1.1-1.1.6, 2011.
[3] K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, C. H. Choi, G. Ding, K. Fischer, T. Ghani, R. Grover, W. Han, D. Hanken, M. Hattendorf, J. He, J. Hicks, R. Huessner, D. Ingerly, P. Jain, R. James, L. Jong, S. Joshi, C. Kenyon, K. Kuhn, K. Lee, H. Liu, J. Maiz, B. McIntyre, P. Moon, J. Neirynck, S. Pae, C. Parker, D. Parsons, C. Prasad, L. Pipes, M. Prince, P. Ranade, T. Reynolds, J. Sandford, L. Shifren, J. Sebastian, J. Seiple, D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. Troeger, P. Vandervoorn, S. Williams, and K. Zawadzki, “A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging,” IEEE International Electron Devices Meeting, pp. 247-250, 2007.
[4] A. J. Strojwas, “Is the bulk vs. SOI battle over?,” International Symposium on VLSI Technology, Systems, and Applications, pp. 1-2, 2013.
[5] T. I. Tsai, T. S. Chao, C. J. Su, H. C. Lin, T. Y. Huang, H. C. Lin, and Y. J. Wei, “Low temperature polycrystalline Si nanowire devices with gate-all-around Al2O3/TiN structure using an implant-free technique,” IEEE 4th International Nanoelectronics Conference, pp. 1-2, 2011.
[6] R. Tsai, M. Barsky, J. B. Boos, B. R. Bennett, J. Lee, N. A. Papanicolaou, R. Magno, C. Namba, P. H. Liu, D. Park, R. Grundbacher, and A. Gutierrez, “Metamorphic AlSb/InAs HEMT for low-power, high-speed electronics,” Proc. IEEE GaAs Dig, pp. 294-297, 2003.
[7] M. L. A. J. Bauer, “III-V material : latest developments and perspectives,” 2008.
[8] D. K. Schroder, “Semiconductor Material and Device Characterization,” 2006.
[9] D. Y. Petrovykh, M. J. Yang, and L. J. Whitman, “Chemical and electronic properties of sulfur-passivated InAs surfaces,” Surface Science, vol. 523, no. 3, pp. 231-240, 2003.
[10] M. Milojevic, C. L. Hinkle, F. S. Aguirre-Tostado, H. C. Kim, E. M. Vogel, J. Kim, and R. M. Wallace, “Half-cycle atomic layer deposition reaction studies of Al2O3 on (NH4)2S passivated GaAs(100) surfaces,” Applied Physics Letters, vol. 93, no. 25, pp. 252905, 2008.
[11] N. Eassa, D. M. Murape, J. H. Neethling, R. Betz, E. Coetsee, H. C. Swart, A. Venter, and J. R. Botha, “Chalcogen based treatment of InAs with [(NH4)2S/(NH4)2SO4],” Surface Science, vol. 605, no. 11-12, pp. 994-999, 2011.
[12] E. O’Connor, B. Brennan, V. Djara, K. Cherkaoui, S. Monaghan, S. B. Newcomb, R. Contreras, M. Milojevic, G. Hughes, M. E. Pemble, R. M. Wallace, and P. K. Hurley, “A systematic study of (NH4)2S passivation (22%, 10%, 5%, or 1%) on the interface properties of the Al2O3/In0.53Ga0.47As/InP system for n-type and p-type In0.53Ga0.47As epitaxial layers,” Journal of Applied Physics, vol. 109, no. 2, pp. 024101, 2011.
[13] S. A. Jewett, and A. Ivanisevic, “Wet-chemical passivation of InAs: toward surfaces with high stability and low toxicity,” Acc Chem Res, vol. 45, no. 9, pp. 1451-9, Sep 18, 2012.
[14] D. Wheeler, L. E. Wernersson, L. Fröberg, C. Thelander, A. Mikkelsen, K. J. Weststrate, A. Sonnet, E. M. Vogel, and A. Seabaugh, “Deposition of HfO2 on InAs by atomic-layer deposition,” Microelectronic Engineering, vol. 86, no. 7-9, pp. 1561-1563, 2009.
[15] H.-D. Trinh, E. Y. Chang, Y.-Y. Wong, C.-C. Yu, C.-Y. Chang, Y.-C. Lin, H.-Q. Nguyen, and B.-T. Tran, “Effects of Wet Chemical and Trimethyl Aluminum Treatments on the Interface Properties in Atomic Layer Deposition of Al2O3 on InAs,” Japanese Journal of Applied Physics, vol. 49, no. 11, pp. 111201, 2010.
[16] C. A. Lin, M. L. Huang, P. C. Chiu, H. K. Lin, J. I. Chyi, T. H. Chiang, W. C. Lee, Y. C. Chang, Y. H. Chang, G. J. Brown, J. Kwo, and M. Hong, “InAs MOS devices passivated with molecular beam epitaxy-grown Gd2O3 dielectrics,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 30, no. 2, pp. 02B118, 2012.
[17] H.-D. Trinh, Y.-C. Lin, H.-C. Wang, C.-H. Chang, K. Kakushima, H. Iwai, T. Kawanago, Y.-G. Lin, C.-M. Chen, Y.-Y. Wong, G.-N. Huang, M. Hudait, and E. Y. Chang, “Effect of Postdeposition Annealing Temperatures on Electrical Characteristics of Molecular-Beam-Deposited HfO2 on n-InAs/InGaAs Metal-Oxide-Semiconductor Capacitors,” Applied Physics Express, vol. 5, no. 2, pp. 021104, 2012.
[18] Q.-H. Luc, E. Y. Chang, H.-D. Trinh, H.-Q. Nguyen, B.-T. Tran, and Y.-C. Lin, “Effect of annealing processes on the electrical properties of the atomic layer deposition Al2O3/In0.53Ga0.47As metal oxide semiconductor capacitors,” Japanese Journal of Applied Physics, vol. 53, no. 4S, pp. 04EF04, 2014.
[19] L. B. Ruppalt, E. R. Cleveland, J. G. Champlain, S. M. Prokes, J. Brad Boos, D. Park, and B. R. Bennett, “Atomic layer deposition of Al2O3 on GaSb using in situ hydrogen plasma exposure,” Applied Physics Letters, vol. 101, no. 23, pp. 231601, 2012.
[20] C. H. Wang, S. W. Wang, G. Doornbos, G. Astromskas, K. Bhuwalka, R. Contreras-Guerrero, M. Edirisooriya, J. S. Rojas-Ramirez, G. Vellianitis, R. Oxland, M. C. Holland, C. H. Hsieh, P. Ramvall, E. Lind, W. C. Hsu, L. E. Wernersson, R. Droopad, M. Passlack, and C. H. Diaz, “InAs hole inversion and bandgap interface state density of 2 × 1011 cm−2 eV−1 at HfO2/InAs interfaces,” Applied Physics Letters, vol. 103, no. 14, pp. 143510, 2013.
[21] Cheng-Hsuan Hsieh, Jei-Wei Hsu, Pei-Chin Chiu, Wei-Jen Hsueh, Nien-Tze Yeh and Jen-Inn Chyi, “Low Interface Trap Density HfO2/n-InAs MOS Capacitors Prepared by In-situ Atomic Layer Deposition,” International Electron Devices and Materials Symposium, Taipei, Nantou, R.O.C., 2013.
[22] 許哲瑋, “氧化鉿/砷化銦金氧半結構之製備及其界面與電性研究, 國立中央大學碩士論文, 2012.
[23] J. Wu, E. Lind, R. Timm, M. Hjort, A. Mikkelsen, and L. E. Wernersson, “Al2O3/InAs metal-oxide-semiconductor capacitors on (100) and (111)B substrates,” Applied Physics Letters, vol. 100, no. 13, pp. 132905, 2012.
[24] H. D. Trinh, G. Brammertz, E. Y. Chang, C. I. Kuo, C. Y. Lu, Y. C. Lin, H. Q. Nguyen, Y. Y. Wong, B. T. Tran, K. Tran, and H. Tran, “Electrical Characterization of Al2O3/n-InAs Metal-Oxide-Semiconductor Capacitors With Various Surface Treatments,” IEEE Electron Device Letters, vol. 32, no. 6, pp. 752-754, 2011.
[25] Y. Q. Wu, R. S. Wang, T. Shen, J. J. Gu, and P. D. Ye, “First experimental demonstration of 100 nm inversion-mode InGaAs FinFET through damage-free sidewall etching,” IEEE International Electron Devices Meeting, pp. 1-4, 2009.
[26] S. H. Kim, M. Yokoyama, R. Nakane, O. Ichikawa, T. Osada, M. Hata, M. Takenaka, and S. Takagi, “High performance sub-20-nm-channel-length extremely-thin body InAs-on-insulator tri-gate MOSFETs with high short channel effect immunity and Vth tunability,” IEEE International Electron Devices Meeting, pp. 16.4.1-16.4.4, 2013.
[27] R. Engel-Herbert, Y. Hwang, and S. Stemmer, “Comparison of methods to quantify interface trap densities at dielectric/III-V semiconductor interfaces,” Journal of Applied Physics, vol. 108, no. 12, pp. 124101, 2010.
[28] H.-Y. Lin, S.-L. Wu, C.-C. Cheng, C.-H. Ko, C. H. Wann, Y.-R. Lin, S.-J. Chang, and T.-B. Wu, “Influences of surface reconstruction on the atomic-layer-deposited HfO2/Al2O3/n-InAs metal-oxide-semiconductor capacitors,” Applied Physics Letters, vol. 98, no. 12, pp. 123509, 2011.
[29] Y. Hwang, R. Engel-Herbert, N. G. Rudawski, and S. Stemmer, “Analysis of trap state densities at HfO2/In0.53Ga0.47As interfaces,” Applied Physics Letters, vol. 96, no. 10, pp. 102910, 2010.
[30] G. Miceli, and A. Pasquarello, “Defect levels at GaAs/Al2O3 interfaces: As–As dimer vs. Ga dangling bond,” Applied Surface Science, vol. 291, no. 12, pp. 16-19, 2014.
[31] E. J. Kim, L. Wang, P. M. Asbeck, K. C. Saraswat, and P. C. McIntyre, “Border traps in Al2O3/In0.53Ga0.47As (100) gate stacks and their passivation by hydrogen anneals,” Applied Physics Letters, vol. 96, no. 1, pp. 012906, 2010.
[32] R. Timm, A. Fian, M. Hjort, C. Thelander, E. Lind, J. N. Andersen, L. E. Wernersson, and A. Mikkelsen, “Reduction of native oxides on InAs by atomic layer deposited Al2O3 and HfO2,” Applied Physics Letters, vol. 97, no. 13, pp. 132904, 2010.
[33] Y. Yuan, L. Wang, B. Yu, B. Shin, J. Ahn, P. C. McIntyre, P. M. Asbeck, M. J. W. Rodwell, and Y. Taur, “A Distributed Model for Border Traps in Al2O3-InGaAs MOS Devices,” IEEE Electron Device Letters, vol. 32, no. 4, pp. 485-487, 2011.
[34] 洪聖宗, “電子束微影鄰近效應修正與BA-m Benzoxazine film 製備抗反射層,”國立中央大學碩士論文, 2006.
[35] 王聖瑜, “次微米銻砷化銦鎵基極雙異質接面雙極性電晶體製程技術發展與特性分析,”國立中央大學博士論文, 2013.
[36] S. Mathew, L. K. Bera, N. Balasubramanian, M. S. Joo, and B. J. Cho, “Channel mobility degradation and charge trapping in high-k/metal gate NMOSFETs,” Thin Solid Films, vol. 462-463, pp. 11-14, 2004.
[37] W. Zhu, J. P. Han, and T. P. Ma, “Mobility Measurement and Degradation Mechanisms of MOSFETs Made With Ultrathin High-k Dielectrics,” IEEE Transactions on Electron Devices, vol. 51, no. 1, pp. 98-105, 2004.
[38] F. Wang, S. Yip, N. Han, K. Fok, H. Lin, J. J. Hou, G. Dong, T. Hung, K. S. Chan, and J. C. Ho, “Surface roughness induced electron mobility degradation in InAs nanowires,” Nanotechnology, vol. 24, no. 37, pp. 375202, Sep 20, 2013.
[39] C. H. Lee, T. Nishimura, T. Tabata, C. Lu, W. F. Zhang, K. Nagashio, and A. Toriumi, “Reconsideration of electron mobility in Ge n-MOSFETs from Ge substrate side- Atomically flat surface formation, layer-by-layer oxidation, and dissolved oxygen extraction,” IEEE International Electron Devices Meeting, pp. 2.3.1-2.3.4, 2013.
指導教授 綦振瀛(Jen-inn Chyi) 審核日期 2014-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明