博碩士論文 943403004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.217.220.114
姓名 陳新仁(Hsin-Jen Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 放電披覆加工鉬金屬與鋁合金之研究
(Study on the EDC Process of Mo Metal and Al Alloy)
相關論文
★ 運用化學機械拋光法於玻璃基板表面拋光之研究★ 電泳沉積輔助竹碳拋光效果之研究
★ 凹形球面微電極與異形微孔的成形技術研究★ 運用電泳沉積法於不鏽鋼鏡面拋光之研究
★ 電化學結合電泳精密拋光不銹鋼之研究★ 純水中的電解現象分析與大電流放電加工特性研究
★ 結合電化學與電泳沉積之微孔複合加工研究★ 放電加工表面改質與精修效果之研究
★ 汽車熱交換器用Al-Mn系合金製程中分散相演化及再結晶行為之研究★ 磁場輔助微電化學銑削加工特性之研究
★ 磁場輔助微電化學鑽孔加工特性之研究★ 微結構電化學加工底部R角之改善策略分析與實做研究
★ 加工液中添加Al-Cr混合粉末對工具鋼放電加工特性之影響★ 不同加工液(煤油、蒸餾水、混合液)對鈦合金(Ti-6Al-4V)放電加工特性之影響
★ 放電與超音波振動複合加工添加TiC及SiC粉末對Al-Zn-Mg系合金加工特性之影響★ 添加石墨粉末之快速穿孔放電加工特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 放電披覆加工(EDC)是運用放電加工(EDM)的原理及調整放電參數在放電加工表面上進行材料披覆的一種加工技術。 一般EDC是在煤油中進行,煤油經過高溫裂解所產生的碳元素會與來自於電極材料的游離物質反應生成碳化物,所以EDC處理後的工件表面成份大都是碳化物,至於用EDC方法披覆非碳化物的研究相對較少。 本論文嘗試改變放電加工介質及自製不同電極材料進行EDC研究,主要是探討較特殊的碳化物及氮化物材料之適合參數條件及其產生的機制。
本研究選擇矽油為放電加工液,搭配石墨電極在高熔點難加工的鉬金屬表面披覆碳化矽材料是基於鉬金屬在微波管元件應用上的需求。 由實驗結果顯示選擇適當的放電加工參數不僅可以進行鉬金屬之加工成型,也可以對鉬金屬表面進行碳化矽吸波材料之披覆處理,因此可以簡化複雜的披覆程序與減少昂貴設備的投資,而具有應用在國防工業的潛力。
本研究製作鈦金屬及氮化鈦陶瓷兩類電極材料,分別在煤油(濕式EDC)與氮氣(乾式EDC)中對商用鋁合金表面進行披覆加工處理是著眼於改善鋁合金材料應用在燃料電池的雙極板時不耐酸蝕的缺點。 依據實驗的結果顯示:在濕式EDC時,高燒結密度(80%)的Ti金屬電極可以對鋁合金同時進行EDM及EDC處理,加工表面含有緻密的TiC層。 在煤油中添加氮化鈦粉末可以改善加工效率與表面品質,但採用高密度 (80%) 的TiN陶瓷電極,在鋁合金表面僅會形成多孔隙的TiC陶瓷層。 在乾式EDC方面,使用低密度 (60%) 的Ti燒結電極,在適當的參數條件下可以進行純TiN披覆處理,但高密度者需要更高的放電能量。 TiN陶瓷電極可以直接在鋁合金表面披覆純TiN層,然而低密度(60%)的TiN電極較不耐高放電能量,電極的耗損率會較高。 反觀採用高密度的情形,TiN披覆層的微觀形貌會受到峰值電流的影響,低峰值電流的TiN披覆層呈現緻密微細顆粒形貌,高峰值電流時則呈現多孔的網狀熔塊結構,表面粗糙度也比較高。
由於碳化鈦及氮化鈦均是屬於耐化學蝕腐之陶瓷材料,而放電加工技術也可被應用在燃料電池之金屬雙極板流道之成型製作,因此本研究結果具有作為一種複合加工技術應用在此領域之中的潛力。
摘要(英) Electrical discharge coating (EDC) is the application of electrical discharge machining (EDM) principle and modulating the discharge parameters to confer the coatings on machined workpiece. Normally, it is performed in kerosene, as a result, carbide layer may generate by reaction of pyrolysis carbon and metal ions. However, non-carbide formed by EDC process is rarely studied. This paper attempts to adopt different dielectric fluids and home-made electrodes to conduct EDC process to shed light on its optimal discharge parameters and different coating materials including special carbide and nitride.
In this study, silicone oil selected to accompany with graphite electrode to conduct EDC process on refractory molybdenum (Mo) metal was in view of a requirement of SiC coating in microwave tube application. The experimental results show that by selecting the appropriate discharge parameters, it can not only proceed to machine process but also to coat SiC absorbing material on the surface of Mo. Evidently, EDC process can simplify the coating process and save the investment of expensive equipment, which demonstrates its potential application in the defense industry.
In order to improve the poor corrosion resistance of Al alloy used in bipolar plate of PEMFC, titanium (Ti) metal and titanium nitride (TiN) ceramic were chosen as electrodes to carry out EDC in kerosene (wet) and nitrogen gas (dry), respectively. On one hand of wet EDC, high sintered density (80%) Ti electrode with appropriate discharge parameters can perform both EDM and EDC processes to produce dense TiC layer on Al alloy. Furthermore, it can improve the machining efficiency and quality of machined surface by adding the titanium nitride (TiN) powder in kerosene. But, using high density (80%) TiN ceramic electrodes with appropriate discharge parameters will result in a porous TiC layer on the surface of Al alloy. On the other hand of dry EDC, with appropriate discharging parameters, low density (60%) sintered Ti electrode can form pure TiN film on the surface of Al alloy. However, higher density Ti electrode needs using high discharge energy. In contrast, TiN electrode can directly deposit pure TiN layer on Al alloy. But, low density (60%) TiN electrode will result in high wear rate. By using high density TiN electrode can survive under high discharge energy. Whereas, the morphology of TiN layer is dependent of discharge current. With low discharge current currents, TiN layer exhibits a dense surface with fine grain, while high discharge current will result into porous network appearance and showing relatively high surface roughness.
In view of TiC and TiN are good chemical corrosion resistance materials and EDM technology can be used to fabricate the fuel channel of metal bipolar plate in PEMFC, the results of this study may serve as a hybrid machining process in this field.
關鍵字(中) ★ 放電披覆加工
★ 自燃高溫反應合成
★ 穩定型
★ 非穩定型
★ 材料移除率
★ 電極耗損率
★ 鉬金屬
★ 鋁合金
★ 碳化矽
★ 碳化鈦
★ 氮化鈦
關鍵字(英) ★ EDC
★ SHS
★ Stable
★ Unstable
★ MRR
★ TWR
★ Mo
★ Al alloy
★ SiC
★ TiC
★ TiN
論文目次 中文摘要 I
英文摘要 III
謝 誌 V
目 錄 VI
圖目錄 X
表目錄 XIV
第一章 緒 論 1
1-1 研究背景 1
1-2 研究動機 3
1-3 文獻回顧 3
1-3-1放電加工技術發展 3
1-3-2放電披覆加工之演進 11
1-3-3鉬金屬與微波管 16
1-3-4鋁合金與燃料電極 20
1-4 研究目的 25
1-5 論文構成與架構 26
第二章 濕式EDC鉬金屬的特性與分析 29
2-1前言 29
2-2實驗方法 33
2-2-1實驗設備 33
2-2-2實驗材料 33
2-2-3實驗流程 35
2-3 結果與討論 37
2-3-1鉬金屬之放電加工特性 37
2-3-1-1電極極性之影響 37
2-3-1-2放電參數對MRR與TWR之影響 38
2-3-1-3放電參數對加工表面粗糙度之影響 39
2-3-1-4放電加工表面觀察與分析 40
2-3-2鉬金屬之放電披覆加工處理 41
2-3-2-1峰值電流與脈衝維持時間之影響 41
2-3-2-2脈衝休止時間之影響 43
2-3-2-3放電披覆加工表面粗糙度量測 44
2-3-2-4放電披覆加工表面觀察與分析 44
2-4結論 49
第三章 濕式EDC鋁合金的特性與分析 50
3-1 前言 50
3-2實驗方法 50
3-2-1實驗設備 50
3-2-2實驗材料 51
3-2-3實驗流程 54
3-3 結果與討論 56
3-3-1鈦金屬燒結電極 57
3-3-1-1電極密度(孔隙度)與放電參數之影響 57
3-3-1-2油中添加氮化鈦粉末之影響 61
3-3-1-3濕式EDC之放電行為與成份影響 63
3-3-1-4披覆層之機械性質量測 64
3-3-2氮化鈦陶瓷電極 66
3-3-2-1放電參數之影響 66
3-3-2-2表面披覆層之成份分析 67
3-3-2-3放電波型與鋁合金表面粗糙度 69
3-3-2-4表面披覆層之顯微組織觀察 70
3-3-2-5 TiC披覆層的合成途徑 72
3-4結論 73
第四章 乾式EDC鋁合金之特性與分析 75
4-1 前言 75
4-2基本原理 75
4-2-1乾式EDM 75
4-2-2乾式EDC 76
4-3 實驗方法 78
4-3-1實驗設備與材料 78
4-3-2實驗流程 81
4-4 結果與討論 82
4-4-1 鈦金屬壓結電極 82
4-4-1-1放電參數的影響 82
4-4-1-2氮氣壓力與電極轉速的影響 85
4-4-1-3電極SHS反應的影響 86
4-4-1-4表面披覆層之成份分析 90
4-4-1-5 TiN披覆層的披覆模式 91
4-4-2 鈦金屬燒結電極 94
4-4-2-1電極極性的影響 95
4-4-2-2放電參數的影響 95
4-4-2-3表面披覆層之成份分析與斷面觀察 99
4-4-2-4表面披覆層之性質測試 102
4-4-3氮化鈦陶瓷電極 104
4-4-3-1電極密度與峰值電流之影響 104
4-4-3-2放電波型與鋁合金表面粗糙度 108
4-4-3-3表面披覆層之成份分析 109
4-4-3-4表面披覆層之顯微組織觀察 110
4-5結論 113
第五章 總結論 115
參考文獻 117
作者簡歷 137
參考文獻 [1]. H. El-Hofy, Advanced machining processes-nontraditional and hybrid machining processe, McGraw-Hill Co.(2005) 203-226.
[2]. A. Gangadhar, M. S. Shunmugan, P .K. Phillip, Surface modification in electrodischarge processing with a powder compact tool electrode, Wear (1991) 143:45-55。
[3]. N. Mohri, N. Sato,Y. Tsunejawa, Metal surface modification by electrical discharge machining with composite electrode, Annals of the CIRP (1993) 42(1):219-222。
[4]. N. Mohri, N. Saito, M. Suzuki, T. Takawashi and K. Kobayashi, Surface modification by EDM-An innovation in EDM with semi-conductive electrodes, J. Jpn, Soc, Prec. Eng. (2001) 67(1):114-119。
[5]. Z. L. Wang, Y. Fang, P. N. Wu, W. S. Zhao, K. Cheng, Surface modification process by electrical discharge machining with a Ti powder green compact electrode, J. Mat. Process. Technol. (2002) 129:139-142。
[6]. M. Okane, Development of coating technology MSCoating using electric discharge. IHI Engineering Review (2006)V39 N1: 1-8。
[7]. V. Ramani, M. L.Cassidenti, Inert-Gas Electrical Discharge Machining, NASA, National Technology Transfer Center (NTTC), Wheeling, WV (1985).
[8]. M. Kunieda, B. Lauwers, K. P. Rajurjkar, B. M. Schumacher, Advancing EDM through fundamental insight into the process, Annals of the CIRP (2005) 54(2): 599-632.
[9]. S. Hayakawa, I. R. Ori, F. Itoigawa, Fabrication of microstructure using EDM deposition, Proceedings of the 13th International Symposium for Electromaching. Bilbao (2001) 783-793.
[10]. Z. Peng, Z. Wang, Y. Dong , H. Chen, Developmentof a reversible machining for fabrication of microstructure by using micro-EDM, J. Mat. Process. Technol. (2010) 129-136.
[11]. Y. C. Lin, B. H. Yan, Y. S. Chang, Machining characteristics of titanium alloy (Ti–6Al–4V) using a combination process of EDM with USM , J. Mat. Process. Technol. (2000) 104: 171–177.
[12]. K. H. Hoand and S. T. Newman, State of the art electrical discharge machining (EDM), Int. J. Mach. Tools Manuf. (2003) 43:1287–1300.
[13]. S. Hayakawa, M. Takahashi, F. Itoigawa, T. Nakamura, Study on EDM phenomena with in-process measurement of gap distance, J. Mat. Process. Technol. (2004) 149: 250–255.
[14]. M. Ghoreishi and C. Tabari, Investigation into the effect of voltage excitationof pre-Ignition spark pulse on the electro-discharge, Materials and Manufacturing Processes (2007) 22: 833–841.
[15]. A. K. Khanra, L. C. Pathak, M. M. Godkhind, Microanalysis of debris formed during electrical discharge machining (EDM), J. Mater Sci (2007) 42:872–877.
[16]. J. Marafona, Black layer characterisation and electrode wear ratio in electrical discharge machining (EDM), J. Mat. Process. Technol. (2007) 184: 27–31.
[17]. B. Bhattacharyya, S. Gangopadhyay, B. R. Sarkar, Modelling and analysis of EDMed surface integrity, J. Mat. Process. Technol. (2007) 189:169–177.
[18]. H. Zarepour, A. F. Tehrani, D. Karimi, S. Amini, Statistical analysis on electrode wear in EDM of tool steel DIN 1.2714 used in forging dies, J. Mat. Process. Technol. (2007) 187–188 : 711–714.
[19]. P. Govindan, S. S. Joshi, Experimental characterization of material removal in dry electrical discharge drilling, Int. J. Mach. Tools Manufact. (2010) 50:431–443.
[20]. H. Eivazi-Bagheri, M. R. Shabgard, Experimental Investigation of the Pulse and Plasma Flushing Efficiency in Electrical Discharge Machining, J. of Solid Mechanics (2011) V3N4:315-322.
[21]. L. Cai, M. Li, H. Yang, D. Hu, Electrical discharge dressing metal-bonded diamond grinding whells with various mediums, Proceedings of the IMechE, Part B: J. of Engineering Manufacture (2012) 227(1) :102-108.
[22]. E. V. Kholodnov, Precision electric-spark machining of metals in a carbon-free medium, Appl. Electrical Phenomena (1965) N1:30-37.
[23]. K. M. Teshima, T. Sata, Performance of working fluid in high speed EDM (1970) 26-34.
[24]. A. Erden, D. Temel, Investigation on the use of water as a dielectric liquid in electric discharge machining, in: Proceedings of the 22nd Machine Tool Design and Research Conference, Manchester (1981) 437–440.
[25]. T. Masuzawa, K. Tanuka, Water-based Dielectric Solution for EDM, Annals of the CIRP (1983) Vo32N1: 119-122.
[26]. K. Kagaya, Y. Oishi, K. Yada, Micro-electrodischarge machining using water as a working fluid-I: Micro-hole drilling, Precision Engineering (1986) V8N37:156-162.
[27]. W. König, L. Jörres, Aqueous solutions of organic compounds as dielectrics for EDM sinking, Annals of the CIRP (1987) 36: 105–109.
[28]. R. Kranz, F. Wendl, K.-D. Wupper, Influence of EDM conditions on the toughness of tool steels, Thyssen Edelstahl Technische Berichte (1990) 100–105.
[29]. I. Ogata, Y. Mukoyama, Carburizing and decarburizing phenomena in EDM’d surface, International Journal of Japan Society Precision Engineering (1993) 27(3): 197–202.
[30]. W. König, F. Klocke, M. Sparrer, EDM-sinking using water-based dielectrics and electropolishing – a new manufacturing sequence in tool-making, Proceedings of the 11th International Symposium on Electromachining (ISEM XI), Lausanne, Switzerland (1995) 225- 234
[31]. S. L. Chen, F.Y. Huang, Y. Suzuki, B. H. Yan, Electrical discharge machining characteristics of Ti-6Al-4V alloy using distilled water as a dielectric fluid, J. of Japan Institute of Light Metals (1997) V47N4: 226-231.
[32]. S. L. Chen, B.H. Yan, F.Y. Huang, Influence of kerosene and distilled water as dielectric discharge machining characteristics of Ti-6Al-4V alloy, J. Mat. Process. Technol. (1999) V87: 107-111.
[33]. R. Dewes, D. Aspinwall, J. Burrows, M. Paul, F. El-Menshawy, High speed machining-multi-function/hybrid systems, Proceed¬ings of the Fourth International Conference on Industrial Tooling, Southampton, UK (2001) 91–100.
[34]. M. Kunieda, M. Yoshida, Electrical discharge machining in gas, Annals of the CIRP (1997) V46(1) : 143-146.
[35]. M. Kunieda, C. Furudate, High precision cutting by dry WEDM, Annals of the CIRP (2001) V50: 121-124.
[36]. Q. H. Zhang, J. H. Zhang, J.X. Deng, Z.W. Niu, Ultrasonic vibration electrical discharge machining in gas, J. Mat. Process. Technol. (2002) 129: 135-138.
[37]. M. Kunieda, Y. Miyoshi, T. Takaya, N. Nakajima, Z. B. Yu, M.Y oshida, High speed 3D milling by dry EDM, Annals of the CIRP (2003) 52/1:147-150.
[38]. Y. ZhanBo, J. Takahashi, M. Kunieda, Dry electrical discharge machining of cemented carbide, J. Mat. Process. Technol. (2004) 149: 353–357.
[39]. Q. H. Zhang, J. H. Zhang, S. F. Ren, J. X. Deng, X.Ai, Study on technology of ultrasonic vibration aided electrical discharge machining in gas, J. of Materials Processing Technology (2004) 149:640-644.
[40]. F. N. Leão, I. R. Pashby, A review on the use of environmentally- friendly dielectric fluids in electrical discharge machining, J. Mat. Process. Technol. (2004) 149: 341–346.
[41]. Q. H. Zhang, R. Du, J. H. Zhang, Q. B. Zhang, An investigation of ultrasonic-assisted electrical discharge machining in gas, Int. J. Mach. Tools Manufact. (2006) 46 : 1582-1588.
[42]. C. C. Kao, J. Tao, S. Lee, and A. J. Shih, Dry wire electrical discharge machining of thin workpiece, Transactions of NAMRI/SME (2006) Vl: 253-260.
[43]. S. Evertz, W. Dott, A. Eisentraeger, Electrical discharge machining: Occupational hygienic characterization using emission-based monitoring, Int. J. Hyg. Environ. Health (2009) 209: 423–434.
[44]. C. C. Kao, J. Tao, A. J. Shih, Near dry electrical discharge machining, Int. J. Mach. Tools Manufact. (2007) 47: 2273–2281.
[45]. Z. L.Wang, J. Z. Cui, B. D. Jin, Study on Micro Electrical Discharge Deposition in Air, Proceedings of the IEEE, international Conference on Mechatronics and Automation (2007) Aug.5-8, Harbin, China.
[46]. J Tao, A. J. Shih, J. Ni, Near-Dry EDM Milling of Mirror-Like Surface Finish, International Journal of Electrical Machining (2008) N13, Jan.:29-33.
[47]. S. K. Saha, S. K. Choudhury, Experimental investigation and empirical modeling of the dry electric discharge machining process, Int. J. Mach. Tools Manufact. (2009) 49: 297-308.
[48]. M. Fujiki, J. Ni, A. J. Shih, Investigation of the effects of electrode orientation and fluid flow rate in near-dry EDM milling, Int. J. Mach. Tools Manufact. (2009) 49: 749–758.
[49]. M. G. Xua, J. H. Zhang, Y. Li, Q. H. Zhang, S.F. Ren, Material removal mechanisms of cemented carbides machined by ultrasonic vibration assisted EDM in gas medium, J. Mat. Process. Technol. (2009) 209:1742–1746.
[50]. K. L. Wu, B. H. Yan, J. W. Lee, C. G. Ding, Study on the characteristics of electrical discharge machining using dielectric with surfactant, J. Mat. Process. Technol. (2009) 209:3783–3789.
[51]. M. Fujiki, G. Y. Kim, J. Ni, A. J. Shih, Gap control for near-dry EDM milling with lead angle, Int. J. Mach. Tools Manufact. (2011) 51: 77–83.
[52]. S. P. Sivapirakasam, J. Mathew, M. Surianarayanan, Constituent analysis of aerosol generated from die sinking electrical discharge machining process, Process Safety and Environmental Protection (2011) 89:141-150.
[53]. Y. Zhang, Y. Liu, Y. Shen, R. Ji, X. Wang and Z. Li, Die-sinking electrical discharge machining with oxygen-mixed water-in-oil emulsion working fluid, Proceedings of the IMechE, Part B: Journal of Engineering Manufacture (2012) 227(1) :109-118.
[54]. R. Roth, F. Kuster, K. Wegener, Influence of oxidizing gas on the stability of dry electrical discharge machining process, Procedia CIRP (2013) 6:338–343.
[55]. M. L. Jeswani, Effect of the addition of graphite powder to kerosene used as the dielectric fluid in electrical discharge machining, Wear (1981) 70:133-139.
[56]. H. Narumiya, N. Mohri, N. Saito, H. Ohtake, Y. Tsunekawa, T. Takawashi, K. Kobayashi, EDM by powder suspended working fluid, Proceedings of International symposium for Electro-Machining, The Japan Society of Electrical-Machining Engineers (1989) 5-8.
[57]. N. Saito, N. Mohri, Improvement of machined surface roughness in large area EDM, J. of the Japan Society of Precision Engineering (1991) V57N6: 954-958.
[58]. B. H. Yan, S. Chen, Effect of dielectric with suspended aluminum powder, J. of the Cheineses Society of Mechanical Engineers (1993) 14(3): 307-312 [58].
[59]. B. H. Yan, S. L. Chen, Characteristics of SKD11 by complex process of electrical discharge machining using liquid suspended with aluminum powder, J. of the Japan Institute of Metals (1994) 58 (9):1067-1072.
[60]. Q. Y. Ming, L. Y. He, Powder-suspension dielectric Fluid for EDM, J. of Material Processing Technology (1995) V52:44-54.
[61]. Y. S. Wong, L. C. Lim, I. Rahuman, W. M. Tee, Near-mirror- finish phenomenon in EDM using powder-mixed dielectric, J. Mat. Process. Technol. (1998) 79:30–40.
[62]. H. M. Chow, B.H. Yan, F.Y. Hung, Study of added powder in kerosene for the micro-slit machine of titanium alloy electro-discharge machining, J. Mat. Process. Technol. (2000) V101: 95-103.
[63]. Y. Uno, A. Okada, S. Cetin, Surface Modification of EDMed Surface with Powder Mixed Fluid, 2nd International conference on Design and Production of Dies and Molds (2001).
[64]. B. H. Yan Y. C. Lin, F.Y. Huang, C.H. Wang, Surface modification of SKD 61 during EDM with metal powder in the dielectric, Materials Transactions, JIM (2001) 42(12): 2597-2604.
[65]. Y. F. Tzeng, C. Y. Lee, Effect of powder characteristics on electrodischarge machining, International Journal of Advanced Manufacturing Technology (2001): 7 586-592.
[66]. W. S. Zhao, Q. G. Meng, Z. L. Wang, The application of research on powder mixed EDM in rough machining, J. Mat. Process. Technol. (2002) 129:30-33.
[67]. P. Pecas, E. Henriques, Influence of silicon powder-mixed dielectric on conventional, International Journal of electrical discharge machining, Machine Tools & Manufacture (2003) 43:1465–1471.
[68]. J. Kozak, M. Rozenek, L. Dabrowski, Study of electrical discharge machining using powder-suspended working media, Proceedings of the Institution of Mechanical Engineeris (2003) 217(11):1597-1602.
[69]. D. Klocke, G. Lung, D. Antonoglou, Thomaidis, The effects of powder suspended dielectrics on the thermal influenced zone by electrodischarge machining with small discharge energies, J. Mat. Process. Technol. (2004) 149:191–197.
[70]. W. Rehbeina, H. P. Schulze, K. Mecke, G. Wollenberg, M. Storr, Influence of selected groups of additives on breakdown in EDM sinking, J. Mat. Process. Technol. (2004) 149: 58–64.
[71]. Y. F. Tzeng, F. C. Chen, Investigation into some surface characteristics of electrical discharge machined SKD-11 using powder-suspension dielectric oil, J. Mat. Process. Technol. (2005) 170: 385–391.
[72]. H. K. Kansal, Sehijpal Singh, Pradeep Kumar, Technology and research developments in powder mixed electric discharge machining (PMEDM), J. Mat. Process. Technol. (2007) 184:32–41.
[73]. P. Pecas, E. Henriques, Electrical discharge machining using simple and powder-mixed dielectric: The effect of the electrode area in the surface roughness and topography, J. Mat. Process. Technol. (2008) 200: 250-258.
[74]. H. M. Chow, L. D. Yang, C. T. Lin, Y. F. Chen, The use of SiC powder in water as dielectric for micro-slit EDM machining, J. Mat. Process. Technol. (2008) 195:160–170.
[75]. K. H. Syed, K. Palaniyandi, Performance of electrical discharge machining using aluminium powder suspended distilled water, Turkish J. Eng. Env. Sci. (2012) 36:195–207.
[76]. T. H. Lee, T-F theory of electron emission in high-current arcs, J. of Appl. Phys. (1959) 30(2):166-171.
[77]. M. Motoki, K. Hashiguchi, Energy distribution at the gap in electric discharging machining, Annals of the CIRP (1967) 14:485-489.
[78]. F. V. Dijck, Physico-mathematical analysis of the electro discharge machining process, Dissertation of Katholieke Universiteit Leuven (1973).
[79]. W. Koenig, R. Wertheim, Y. Zvirin, M. Yoren, Material removal and energy distribution in electrical discharge machining, Annals of the CIRP (1975) 24(1): 95-100.
[80]. N. Mohri, M. Suzuki, M. Furuya, N. Saito, Electrode wear process in electrical discharge machining, Annals of the CIRP (1995) 44(1): 165-168.
[81]. H. Xia, M. Kunieda, N. Nishiwaki, Removal amount difference between anode and cathode in EDM process, Int. J. Electrical Machining (1996) 1: 45-52.
[82]. W. Natsu, M. Kunieda, N. Nishiwaki, Study on Influence of Inter-electrode atmosphere on carbon adhesion and removal amount, IJEM (2004), N 9: 43-50.
[83]. M. Kunieda, T. Kobayashi, Clarifying mechanism of determining tool electrode wear ratio in EDM using spectroscopic measurement of vapor density, J. Mat. Process. Technol. (2004) 149:284-288.
[84]. M. Zahiruddin, M. Kunieda, Energy distribution ratio into micro EDM electrodes. J Adv Mech Design, Systems, and Manuf (2010) 4(6): 1095-1106.
[85]. B. Shao, K. P. Rajurkar, Micro-EDM Pulse Energy Distribution Ratio Determination, Proceedings of the 8th International Conference on MicroManufacturing niversity of Victoria, Victoria, BC, Canada, March 25-28 (2013) N20:318-323.
[86]. N. Mohri, N. Saito, M. Suzuki, T. Takawashi, K. Kobayashi, Surface modification by EDM- an innovation in EDM with semi-conductive electrodes, Proc. Winter Ann. Meet ASME (1988) 34: 21-30.
[87]. D. K. Aspinwall, M. L. H. Wise, K. J. Stout, T.H. A. Goh, F. L. Zhao and M. EI-Menshawy, Electrical Discharge Texturing, Int. J. Mach. Tools Manufact. (1992) V32N1/2:183-193.
[88]. Y. Fukuzawa, Y. Kojima, E. Sekiguti, N. Mohri, Surface modification of stainless steel by electrical discharge machining, The Iron and Steel Institute of Japan International (1993) 33 (9): 996-1002.
[89]. Y. Fukuzawa,Y. Kojima,T. Tani,E. Sekiguti,N. Mohri, Fabrication of surface modification layer on stainless steel by electrical discharge machining, Materials and Manufacturing Processes (1995) 10 (2): 195-203.
[90]. J. S. Soni, and G. Ghakraverti, Experiment investigation on migration of material during EDM of die steel (T215 Cr12), J. Mat. Process. Technol. (1996) 56: 439-451.
[91]. Y. Tsuekawa, M. Okumiya, N. Mohri, E. Kuribe, Formation of composite layer containing TiC precipitates by electrical discharge alloying, Materials Transactions, JIM (1997) V38N7: 630-635.
[92]. M. P. Samuel, P. K. Philip, Powder metallurgy tool electrodes for electrical discharge machining, Int. J. Mach. Tools Manufact. (1997) V37N11: 1625-1633. J. Mat. Process. Technol.
[93]. D. I. Pantelis, N. M. Vaxevanidis, A. E. Houndri, P. Dumas, M. Jeandin, Investigation into the application of electrodischarge machining as steel surface modification technique, Surface Engineering (1998) 14 (1): 55–61.
[94]. H. M. Zaw, J. Y .H. Fuh, A.Y.C. Nee, L. Lu, Formation of a new EDM electrode material using sintering techniques, J. Mat. Process. Technol. (1999) 89-90:182-186.
[95]. Y. C. Lin, B. H. Yan, F. Y. Huang, Surface modification of Al-Zn-Mg aluminum alloy using combined process of EDM with USM, J. Mat. Process. Technol. (2001) 115:359-366.
[96]. L. Li, Y. S. Wong, J. Y. H. Fuh, L. Lu, EDM performance of TiC /copper-based sintered electrodes, copper-tungsten electrodes on EDM performance, Materials and Design (2001) 22:669-678.
[97]. Z. L.Wang, Y. Fang, P. N. Wu, W. S.Zhao, K. Cheng, Surface modofication process by electrical discharge machininh with a Ti powder green compact electrode, J. Mat. Process. Technol. (2002) 129:139-142.
[98]. B. Nowicki, R. Pierzynowski, .S. Spadlo, New possibilities of machining and electrodischarge alloying of free-form surfaces, J. Mat. Process. Technol. (2001) 109:371-376.
[99]. M. Akiyoshi, A. Goto, N. Mohri, N. Saito, Planarization of a layer made by using electrical discharge machining, JSME international Journal, Series A (2003) V46N3:496-501.
[100]. J. Simao, H. G. Lee, D. K. Aspinwall, R. C. Dewes, E. M. Aspinwall, Workpiece surface modification using electrical discharge machining, Int. J. Mach. Tools Manufact. (2003) 43:121–128.
[101]. H. C. Tsai, B. H. Yan, F. Y. Huang, EDM performance of Cr/Cu-based composite electrodes, Int. J. Mach. Tools Manufact. (2003) 43: 245–252.
[102]. K. M. Shu, G. C. Tu, Study of electrical discharge grinding using metal matrix composite electrodes, Int. J. Mach. Tools Manufact. (2003) 43: 845–854.
[103]. T. Moro, N. Mohri, H. Otsubo, A. Goto, N. Saito, Study on the surface modification system with electrical discharge machine in the practical usage, J. Mat. Process. Technol. (2004) 149: 65–70.
[104]. H. T. Lee, F. C. Hsu, T. Y. Tai, Study of surface integrity using the small area EDM process with a copper–tungsten electrode, Materials Science and Engineering A (2004) 364: 346–356.
[105]. T. Moro, N. Mohri, H. Otsubo, A. Goto, N. Saito, Study on the surface modification system with electrical discharge machine in the practical usage, J. Mat. Process. Technol. (2004) 149:65–70.
[106]. H. G. Lee, J. Simao, D.K. Aspinwall, R.C. Dewes, W. Voice, Electrical discharge surface alloying, J. Mat. Process. Technol. (2004) 149:334–340.
[107]. C. Y. Bai, C. H. Koo, Effects of kerosene or distilled water as dielectric on electrical discharge alloying of superalloy Haynes 230 with Al–Mo composite electrode,Surface & Coatings Technology (2006) 200:4127-4135.
[108]. O. Hiroyuki, W. Mitsutoshi, A. Mikiya, Y., Hiroki, S. Yoshiyuki, Development of Coating and Cladding Technology,MSCoating®, Using Electro-Discharge Energy, IHI Engineering Review (2006) V39N1:1-8.
[109]. S. K. Ho, D. K. Aspinwall, W. Voice, Use of powder metallurgy (PM) compacted electrodes for electricaldischarge surface alloying/modification of Ti–6Al–4V alloy, J. Mat. Process. Technol. (2007) 191:123–126.
[110]. A. K. Khanra, B. R. Sarkar, B. Bhattacharya, L. C. Pathak, M. M. Godkhind, Performance of ZrB2–Cu composite as an EDM electrode, J. Mat. Process. Technol. (2007) 183: 122–126.
[111]. S. Kumar, R. Singh, T.P. Singh, B.L. Sethi, Surface modification by electrical discharge machining: A review, J. Mat. Process. Technol. (2009) 209:3675–3687.
[112]. Z. Peng, Z. Wang, Y. Dong, H. Chen, Development of a reversible machining method for fabrication of microstructures by using micro-EDM, J. Mat. Process. Technol. (2010) 210:129–136.
[113]. N. Beri, S. Maheshwari, C. Sharma, A. Kumar, Technological Advancement in Electrical Discharge Machining with Powder Metallurgy Processed Electrodes: A Review, Materials and Manufacturing Processes, (2010) 25:1186-1197.
[114]. Y. K. Wang, B. C. Xie, Z. L. Wang, Z. L. Peng, Micro EDM deposition in air by single discharge thermo simulation,Trans. Nonferrous. Met. Soc. China (2011) 21:450-455.
[115]. P. Janmanee, A. Muttamara, Surface modification of tungsten carbide by electrical discharge coating (EDC) using a titanium powder suspension, Applied Surface Science (2012) V258, I19:7255–7265.
[116]. S. Kumar, U. Batra, Surface modification of die steel materials by EDM method using tungsten powder-mixed dielectric, J. of Manufacturing Processes (2012) 14: 35–40.
[117]. A. W. Scott, Understanding Microwave, John Wiley & Sons, Inc. (1983) 282-315.
[118]. A. S. Gilmour, Jr., Principle of Traveling Wave Tube, Section 6-2: Beam Control Techniques-s, Artech House, Inc. (1994) 133-149.
[119]. H. Y. Yeh, The role of structural stability in the reliability of microwave vacuum devices, IEEE Trans. On Electronic Devices (1987) V34N2: 494-497.
[120]. K. Parker, R. H. Abrams, B. G. Danly, B. Levush, Vacuum Electronic, IEEE Trans. Microwave Theory Tech. (2002) V50N3:835-845.
[121]. H. Sobol and K. Tomiyasu, Milestones of Microwaves, IEEE Trans. Microwave Theory Tech. (2002) V50N3: 594-611.
[122]. R. Lawrence, Microfabrication of high-frequency vacuum electron devices, IEEE Transactions on Plasma Science (2004) 32(3): 1277-1291.
[123]. J. R. Pierce, Theory and Design of Electron Guns, 2nd, New York: Van Nostrand (1954) 174-192.
[124]. J. Shields, Applications of Mo metal and its alloys. The International Molybdenum Association (IMOA) of Climax Specialty Metals Cleveland, OHIO (1995) 1-18.
[125]. G. V. Miram and E. L. Lien, Convergient electron gun with bonded nonintercepting control grid, Technical Digest, (1978) 164-167.
[126]. G. A. Hass and A. Smith, Study of high work functon materials needed for close-spaced grid applications, Appl. Surf. Sci. (1980) V4:104-126.
[127]. G. Dohler, A. Rengan and F. Scafuri, Integrated Grid Technology, Appl. Surf. Sci., (1985) 24:475-479.
[128]. H. Tang, S. Tan, Z. Huang, S. Dong and D. Jiang, Surface morphology of α-SiC coating deposited by RF magnetron sputtering, Surface & Coating Technology (2005) 197:161-167.
[129]. L. J. Zhuge, X. M. Wu, F. J.Qu, W. B.Wang, B. Y. Jiang and X. H. Liu, Study on the composition and phase change of BaO/Hf/Mo under high temperature, J. of Physics and Chemistry of Solids (2006) 67:1394-1398.
[130]. J. Jiang, B. Jiang, C. Ren, F. Zhang, T. Feng and X. Wang, Grid emission suppression characteristics of molybdenum grids coated with Hf and Pt films, Vacuum (2006) 80:537-541.
[131]. J. Wang, X. M. Wu and L. J. Zhuge, The structure and phase change of a molybdenum grid coated with silicon and carbon composite thin films annealed at high temperature, Vacuum (2007) 81:890-893.
[132]. M. Sortino, G. Totis and F. Prosperi, Dry turning of sintered molybdenum. J. Mat. Process. Technol. (2013) 213: 1179-1190.
[133]. R. Demellayer and J. Richard, High precision electro discharge machining of mlybdenum and Tungsten, Procedia CIRP (2013) 6: 89- 94.
[134]. 楊志忠,林頌恩,韋文誠,燃料電池的發展現況,科學發展 (2003) 367:30-34.
[135]. A. Hermann ,T. Chaudhuri,P. Spagnol, Bipolar plates for PEM fuel cells:A review, Int. J. Hydrogen Energy (2005) 30:1297-1302.
[136]. X. Li and I. Sabir, Review of bipolar plates in PEM fuel cells: Flow-field designs, Int. J. Hydrogen Energy (2005) 30:359-371.
[137]. J. C. Hung, T. C. Yang, K. C. Li, Studies on the fabrication of metallic bipolar plates -Using micro electrical discharge machining milling, J. of Power Sources (2011) 196: 2070-2074.
[138]. V. Mehta, J. S. Copper, Review and analysis of PEM fuel cell design and manufacturing, J. of Power Sources (2003) 114:32-53.
[139]. J. Wu, X. Z. Yuan, J. J. Martin, H. Wang, J. Zhang, J. Shen, S. Wu, W. Merida, A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies, J. of Power Sources (2008) 184: 104-119.
[140]. D. P. Davies, P. L. Adcock, M. Turpin, S. J. Rowen, Stainless steel as a bipolar plate material for solid polymer fuel cells, J. of Power Sources (2000) 86:237-242.
[141]. J. Wind, R. Späh, W. Kaiser, G. Böhm, Metallic bipolar plates for PEM fuel cells, J. of Power Sources (2002) 105: 256-260.
[142]. N. Aukland, A. Boudina, D. Eddy, J. V. Mantese, M. P. Thompson, and S. S. Wanga, Alloys that form conductive and passivating oxides for proton exchange membrane fuel cell bipolar plates, J. Mater. Res. (2004)V19N6:1723-1729.
[143]. S. Lee, C. H. Huang, J. J. Lai, Y. P. Chen, Corrosion resistant component for PEM fuel cells, J. of Power Sources (2004) 131:162-168.
[144]. H. Tawfik, Y. Hung, D. Mahajan, Metal bipolar plates for PEM fuel cell: a review, Journal of Power Sources (2007) 163:755-767.
[145]. R. A. Antunes, M. C. L. Oliveria, G. Ett, V. Ett, Corrosion of metal bipolar plates for PEM fuel cells: a review, Int. J. Hydrogen Energy (2010) 35: 3632-3647.
[146]. W. H. Zhang, J. H. Hsieh, Tribological behavior of TiN and CrN coatings sliding against an epoxy molding compound, Surface and Coatings Technology (2000) 130:240-247.
[147]. F. Lang, Z. Yu, The corrosion resistance and wear resistance of thick TiN coatings deposited by arc ion plating, Surface and Coatings Technology (2001) 145: 80-87.
[148]. Y. Li, L. Qu, F. Wang, The electrochemical corrosion behavior of TiN and (Ti,Al)N coatings in acid and salt solution, Corrosion Science (2003) 45:1367-1381.
[149]. Y. Wang, D. O. Northwood, An investigation into TiN-coated 316L stainless steel as a bipolar plate material for PEM fuel cells, J. of Power Sources (2007) 165:293-298.
[150]. Y. Wang, D. O. Northwood, An investigation of the electrochemical properties of PVD TiN-coated SS410 in simulated PEM fuel cell environments, Int. J. Hydrogen Energy (2007) 32:895-902.
[151]. K. Sopian, W. R. W. Daud, Challenges and future developments in proton exchange membrane fuel cells, Renewable Energy (2006) 31:719-727.
[152]. J. Barranco, F. Barreras, A. Lozano, A. M. Lopez, V. Roda, J. Martin, M. Maza, G. G. Fuentes, E. Almandoz, Cr and Zr/Cr nitride CAE-PVD coated aluminum bipolar plates for polymer electrolyte membrane fuel cells, Int. J. Hydrogen Energy (2010) 35: 11489-11498.
[153]. AAEE Sanaa, EAS Omar, EA Hammam, MA Ashraf, New electroplated aluminum bipolar plate for PEM fuel cell, J. of Power Sources (2008) 177: 131-13.
[154]. D. R. Hodgson, B. May, P. L. Adcock, D. P. Davies, New lightweight bipolar plate system for polymer electrolyte memebrance fuel cells, J. of Power Sources (2001) 96:233-235.
[155]. S. J. Lee, C. H. Huang, Y. P. Chen, Investigation of PVD coating on corrosion resistance of metallic bipolar plates in PEM fuel cell, J. Mat. Process. Technol. (2003) 140:688-693.
[156]. M. Li, S. Luo,C. Zeng, J. Shen, H. Lin,C. Cao, Corrosion behavior of TiN coated type 316 stainless steel in simulated PEMFC environments, Corrosion Science (2004) 46:1369-1380.
[157]. E. A. Cho, U. S. Jeon, S. A. Hong, I. H. Oh, S.G. Kang, Performance of a 1 kW-class PEMFC stack using TiN-coated 316 stainless steel bipolar plates, J. of Power Sources (2005) 142:177-183.
[158]. Y. Hung, K, M, El-Khatib, H. Tawfik, Testing, Testing and evaluation of aluminum coated bipolar plates of pem fuel cells operation at 70℃, J. of Power Sources (2006) 163: 509-513.
[159]. C. H. Hsu, M. L. Chen, K. L.Lai, Corrosion resistance of TiN/TiAlN-coated ADI by cathodic arc deposition, Materials Science and Engineering (2006) A 421:182-190.
[160]. T. Matsuura, M. Kato, M. Hori, Study on metallic bipolar plate for proton exchange membrane fuel cell, J. of Power Sources (2006) 161:74-78.
[161]. Y. J. Ren, C. L. Zeng, Corrosion protection of 304 stainless steel bipolar plates using TiC films produced by high-energy micro-arc alloying process, J. of Power Sources (2007) 171:778-782.
[162]. Y. Fu, M. Hou, G. Lin, J. Hou, Z. Shao, B. Yi, Coated 316L stainless steel with CrxN film as bipolar plate for PEMFC prepared by pulsed bias arc ion plating, J. of Power Sources (2008) 176:282-286.
[163]. J. Wu, Z. Z. Yuan, J. J. Martin, H. Wang , J. Zhang, J. Shen, S. Wu, W. Merida, A review of PEM cell durability degradation mechanism and mitigation strategies, J. of Power Source (2008) 184:104-119.
[164]. C. Y. Bai, M. D. Ger, M. S. Wu, Corrosion behaviors and contact resistances of the low-carbon steel bipolar plate with a chromized coating containing carbides and nitrides, Int. J. Hydrogen Energy (2009) 34:6778-6789.
[165]. Bernd M. Schumacher, After 60 years of EDM the discharge process remains still disputed, J. Mat. Process. Technol. (2004) 149: 376–381.
[166]. A. Descoeudres, Characterization of electrical discharge machining plasmas, PhD dissertation, Lausanne, EPFL (2006) 67-74.
[167]. J. C. Hung, T. C. Yang, K. C. Li, Studies on the fabrication of metallic bipolar plates-using micro electrical discharge machining milling, J. of Power Sources (2011) 196: 2070-2074.
[168]. I. Sumirat, Y. Ando,S. Shimamura, Theoretical consideration of the effect of porosity on thermal conductivity of porous materials, J. of porous materials (2006) 13:439-443.
[169]. B. F. Naylor,High-temperature Heat Contents of Titanium Carbide and Titanium Nitride, Bureau of Mines, US Department of the Interior, (1945) 68:370-371.
[170]. J. Park, D-J Kim, Y-K Kim, K-H Lee, Improvement of the biocompatibility and mechanical properties of surgical tool with TiN coating by PACVD, Thin Solid Films (2003) 435:100-107.
[171]. A. Ntasi, W. D. Muller, G. Eliades, S. Zinelis, The effect of Electro Discharge Machining (EDM)on the corrosion resistance of dental alloys, Dental Materials (2010) 26:e237-e245.
[172]. I. P. Borovinskaya, Chemical classes of the SHS processes and materials, Pure & Applied Chemistry (1992) 64(7): 919-940.
[173]. K. Morsi, The diversity of combustion synthesis processing: a review, Journal of Material Science (2012) 47: 68-92.
指導教授 顏炳華(Biing-Hwa Yan) 審核日期 2014-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明