博碩士論文 943403041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:3.129.63.252
姓名 楊添福(Tien-Fu Yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 高性能質子交換膜燃料電池膜電極組之研究
(The research of high performance proton exchange membrane fuel cell electrode assemblies)
相關論文
★ 迴轉式壓縮機泵浦吐出口閥片厚度對性能影響之研究★ 鬆弛時間與動態接觸角對旋塗不穩定的影響
★ 電化學製作針錐微電極之製程研究與分析★ 蚶線形滑轉板轉子引擎設計與實作
★ 利用視流法分析金屬射出成形脫脂製程中滲透度與毛細壓力之關係★ 應用離心法實驗探求多孔介質飽和度與毛細力之關係
★ 利用網絡模型數值模擬粉末射出成形製程毛細吸附脫脂機制★ 轉注成形充填過程之巨微觀流數值模擬
★ 二維熱流效應對電化學加工反求工具形狀之分析★ 金屬粉末射出成形製程中胚體毛細吸附脫脂之數值模擬與實驗分析
★ 飽和度對金屬射出成形製程中毛細吸附脫脂之影響★ 轉注成型充填過程巨微觀流交界面之數值模擬
★ 轉注成型充填過程中邊界效應之數值模擬★ 鈦合金整流板電化學加工技術研發
★ 射出/壓縮轉注成型充填階段中流場特性之分析★ 脈衝電化學加工過程中氣泡觀測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 傳統質子交換膜燃料電池膜電極組結構,由一個質子交換膜為中心,以三明治形式依序往外,兩面各夾一層Pt/C-40觸媒層(白金金屬含量40 wt%),其觸媒層外再各夾一層氣體擴散層,組合成五層的膜電極組(結構a)。本研究藉由修改傳統膜電極組結構包含:(1)將Pt/C-80觸媒漿料(白金金屬含量80 wt%)塗佈於Pt/C-40觸媒層與質子交換膜之間,形成七層的膜電極組(結構b);(2)將Pt/C-80觸媒漿料塗佈於Pt/C-40觸媒層與氣體擴散層之間,形成七層的膜電極組(結構c);(3)將Pt/C-80與Pt/C-40觸媒漿料混合,塗佈於質子交換膜與氣體擴散層之間,形成五層的膜電極組(結構d)。在固定的白金金屬載量中,經研究發現調整型膜電極組結構b、結構c和結構d,均比傳統型膜電極組結構a有更好的電池性能。其性能提升之主要原因,推論為觸媒層厚度降低,減少陽極端H+離子傳遞至陰極端的距離(增加導離子度),使得與陰極端的反應縮短,並降低質子傳遞阻抗。
本文亦藉由二維數值模擬分析之觀點,探討影響性能之原因。根據模擬結果顯示,調整型膜電極組電池性能比傳統型較佳的結果與實驗相符。主要原因則包含:質子傳導度、開路電壓,及觸媒層厚度等。同時亦觀察到不同膜電極組之水分佈情形;當Pt/C-80觸媒層介於氣體擴散層與Pt/C-40觸媒層之間(即結構c膜電極組),可發現膜電極組內有較多的液態水堆積。
摘要(英) The conventional 5-layer membrane electrode assembly (MEA) consists of a proton exchange membrane (PEM) locating at its center, two layers of Pt/C-40 (Pt content 40 wt%) locating next on both surfaces of PEM, and two gas diffusion layers (GDL) locating next on the outer surfaces of Pt/C layers (structure-a MEA). In this paper, we report three modified MEAs consisting of Pt/C-40 (Pt content 40 wt%) and Pt/C-80 (Pt content 80 wt%) catalysts. These are: (1) 7-layer structure-b MEA with a thin Pt/C-80 layer locating between Pt/C-40 layer and PEM; (2) 7-layer structure-c MEA with a thin Pt/C-80 layer locating between Pt/C-40 layer and GDL; and (3) 5-layer structure-d MEA with Pt/C-40 and Pt/C-80 mixing homogeneously and locating between PEM and GDL. Under a fixed Pt loading, we find structure-b, -c, and -d MEAs with 20 ~ 40 wt% Pt contributed from Pt/C-80 have better fuel cell performance than structure-a MEA consisting only of Pt/C-40. The reasons are attributed to the better feasibility for H2/O2 gas to reach Pt particles and lower proton transport resistance in catalyst layers of the modified MEAs than structure-a MEA.
On the other hand, a two-dimensional, multi-phase, non-isothermal numerical model was used to investigate the effect of the high performance catalyst layer design. Simulation results show that substituting part of the Pt/C 40 wt% with Pt/C 80 wt% increases the cell performance. It was found that factors including proton conductivity, open circuit voltage and sub-layer thickness have a significant impact on overall cell performance. Different water distribution for different MEA designs was also observed in the simulation results. More liquid water accumulation inside the MEA is seen when the Pt/C 80 wt% sub-layer is next to the gas diffusion layer (structure-c MEA).
關鍵字(中) ★ 燃料電池
★ 膜電極組
★ 觸媒層
關鍵字(英) ★ fuel cell
★ membrane electrode assembly
★ catalyst layer
論文目次 中文摘要 ...i
ABSTRACT...ii
目錄 ...iii
表目錄 ...v
圖目錄 ...vi
符號說明 ...viii

一、 緒論...1
1-1 前言...1
1-2 質子交換膜燃料電池簡介...4
1-3 文獻回顧...11
1-4 研究目的...15
二、 研究方法...17
2-1 質子交換膜燃料電池單電池結構...17
2-1-1 質子交換膜...17
2-1-2 氣體擴散電極...17
2-1-3 防漏墊片...18
2-1-4 石墨流道板...18
2-1-5 集電板...19
2-2 電極製備...19
2-3 膜電極組製備...20
2-4 燃料電池性能量測...22
2-5 AC Impedances、300小時長效測試及SEM、EDS分析...25
2-5-1 AC Impedances量測...25
2-5-2 單電池300小時長效測試...25
2-5-3 SEM與EDS分析...26
2-6 數值方法...26
2-6-1 統御方程式...27
2-6-2 水傳輸現象...30
2-6-3 多層結構觸媒層之團塊模型...32
2-6-4 邊界條件...33
三、 結果與討論...36
3-1 單電池測試-進氣流量200 mL / min...36
3-1-1 結構a與b之燃料電池性能比較...37
3-1-2 結構a與c之燃料電池性能比較...39
3-1-3 結構a與d之燃料電池性能比較...41
3-1-4 四種結構之燃料電池性能比較...42
3-2 單電池測試-進氣流量700 mL / min...43
3-3 各種結構之膜電極組SEM與EDS分析...45
3-4 低白金載量燃料電池單電池測試...46
3-5 單電池300小時長效測試...48
3-6 數值分析與實驗比較...49
3-7 不同白金金屬含量觸媒層結構性能比較...50
3-8 觸媒層中水傳輸現象...52
3-9 觸媒層設計主要參數...54
四、 結論...56
4-1 調整型觸媒層結構膜電極組...56
4-2 數值分析...58
五、 未來展望...59
六、 參考文獻...60
參考文獻 [1] Taiwan Power Company website: http://www.taipower.com.tw.
[2] U.S. Department of Energy website: http://energy.gov/eere/fuelcells/comparison-fuel-cell-technologies.
[3] 衣寶廉,“燃料電池-原理與應用”,五南文化事業機構,2007。
[4] C.H.S. Brian, H. Angelika, “Materials for fuel-cell technologies,” Nature, 414, 345-352, 2001.
[5] K.D. Nam, “Oxygen reduction reaction of surface controlled niobium oxide-based materials as cathodes for PEFC,” Yokohama National University, 2010.
[6] M. Watanabe in Handbook of Fuel Cells, Ed. by W. Vielstich, A. Lamm, H.A. Gasteiger, vol 2. chap. 28; A. Lasita in ibid, chap. 29; S. Mukerjee, S. Srinivasan, in ibid, chap. 34.
[7] V. Mehta, J.S. Cooper, “Review and analysis of PEM fuel cell design and manufacturing,” Journal of Power Sources, 114, 32-53, 2003.
[8] S.D. Thompson, L.R. Jordan, M. Forsyth, “Platinum electrodeposition for polymer electrolyte membrane fuel cells,” Electrochimica Acta, 46, 1657-1663, 2001.
[9] Q. Wang, M. Eikerling, D. Song, Z. Liu, T. Navessin, Z. Xie, S. Holdcroft, “Functionally graded cathode catalyst layers for polymer electrolyte fuel cells,” Journal of Electrochemical Society, 151(7), A950-957, 2004.
[10] Z. Xie, T. Navessin, K. Shi, R. Chow, Q. Wang, D. Song, B. Audreaus, M. Eikerling, Z. Liu, S. Holdcroft, “Functionally graded cathode catalyst layers for polymer electrolyte fuel cells. II. Experimental study of the effect of Nafion distribution,” Journal of Electrochemical Society, 152(6), A1171-1179, 2005.
[11] M.S. Wilson, S. Gottesfeld, “High performance catalyzed membranes of ultra-low Pt loadings for polymer electrolyte fuel cells,” Journal of Electrochemical Society, 139, L28-30, 1992.
[12] M.S. Wilson, S. Gottesfeld, “Thin-film catalyst layers for polymer electrolyte fuel cell electrodes,” Journal of Applied Electrochemistry, 22, 1-7, 1992.
[13] S. Hirano, J. Kim, S. Srinivasan, “High performance proton exchange membrane fuel cells with sputter-deposited Pt layer electrodes,” Electrochimica Acta, 42, 1587-1593, 1997.
[14] C.A. Cavalcam, J.H. Arps, M. Murphy, US Pat. 63,000,000B1, Oct 9, 2001.
[15] S. Lister, G. McLean, “PEM fuel cell electrodes,” Journal of Power Sources, 130, 61-76, 2006.
[16] J. St. Pierre, D.P. Wilkinson, S.A. Campbell, US Patent 6,896,792 B2, 2005.
[17] S.G. Yan, J.C. Doyle, US Patent 0163920 A1, 2005.
[18] S.G. Yan, B. Sompalli, US Patent 0164072 A1, 2005.
[19] D. Olmeijer, US Patent 0068268 A1, 2006.
[20] J. L. Larminie, A. Dicks, Fuel Cells Systems Explained, Jhon Wiley & Sons, Ltd., p.6, Figure 1.6, 2000.
[21] F. Barbir, PEM Fuel Cells, Elsevier Academic Press, MA, USA, chapter 4, page 90, Table 4, 2005.
[22] E-Tek Co. website: www.etek-inc.com.
[23] E.A. Ticianelli, C.R. Derouin, S. Srinivasan, “Localization of platinum in low catalyst loading electrodes to attain high power densities in SPE fuel cells,” Journal of Electroanalytical Chemistry, 251, 275-295, 1988.
[24] S. Mukerjee, S. Srinivasan, A.J. Appleby, “Effect of sputtered film of platinum on low platinum loading electrodes on electrode kinetics of oxygen reduction in proton exchange membrane fuel cells,” Electrochimica Acta, 38(12), 1661-1669, 1993.
[25] T. Berning, D.M. Lu, N. Djilali, “Three-dimensional computational analysis of transport phenomena in a PEM fuel cell,” Journal of Power Sources, 106, 284-294, 2002.
[26] C.H. Cheng, K. Fei, C.W. Hong, “Computer simulation of hydrogen proton exchange membrane and direct methanol fuel cells,” Computer & Chemical Engineering, 31, 247-257, 2007.
[27] L. Marr, X. Li, “Composition and performance modeling of catalyst layer in a proton exchange membrane fuel cell,” Journal of Power Sources, 77, 17-27, 1999.
[28] Q. Wang, M. Eikerling, D. Song, Z. Liu, T. Navessin, Z. Xie, S. Holdcroft, “Functional graded cathode catalyst layers for polymer electrolyte fuel cells I. theoretical modeling,” Journal of Electrochemical Society, 151, A950-A957, 2004.
[29] D. Song, Q. Wang, Z. Liu, M. Eikerling, Z. Xie, T. Navessen, S. Holdcroft, “A method for optimizing distributions of Nafion and Pt in cathode catalyst layers of PEM fuel cells,” Electrochimica Acta, 50, 3347-3358, 2005.
[30] H. Wu, X. Li, P. Berg, “On the modeling of water transport in polymer electrolyte membrane fuel cells,” Electrochimica Acta, 54, 6913-1927, 2009.
[31] K. Broka, P. Ekdunge, “Modelling the PEM fuel cell cathode,” Journal of Applied Electrochemistry, 27, 281-289, 1997.
[32] N.P. Siegel, M.W. Ellis, D.J. Nelson, M.R. von SPakovsky, “A two-dimensional computational model of a PEMFC with liquid water transport,” Journal of Power Sources, 128, 173-184, 2004.
[33] W. Sun, B.A. Peppley, K. Karan, “An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters,” Electrochimica Acta, 50, 3359-3374, 2005.
[34] G. Lin, T.V. Nguyen, “A two-dimensional two-phase model of a PEM fuel cell,” Journal of Electrochemical Society, 153, A372-A382, 2006.
[35] Q. Ye, T.V. Nguyen, “Three-dimensional simulation of liquid water distribution in a PEMFC with experimentally measured capillary functions,” Journal of Electrochemical Society, 154, B1242-B1251, 2007.
[36] C.Y. Jung, W.J. Kim, S.C. Yi, “Computational analysis of polarizations in membrane electrode assembly for proton exchange membrane fuel cells,” Journal of Membrane Science, 341, 5-10, 2009.
[37] T.E. Springer, T.A. Zawodzinski, S. Gottesfeld, “Polymer electrolyte fuel cell model,” Journal of Electrochemical Society, 138, 2334-2342, 1991.
[38] Q. Ye, T.V. Nguyen, “Three-dimensional simulation of liquid water distribution in a PEMFC with experimentally measured capillary functions,” Journal of Electrochemical Society, 154, B1242-B1251, 2007.
[39] COMSOL Inc., User’s Manual, Version 3.5a, 2008.
指導教授 洪勵吾(Lih-Wu Hourng) 審核日期 2014-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明