博碩士論文 102323602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:63 、訪客IP:3.133.139.164
姓名 艾斯美(Ismi Choirotin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用低氣壓超塑性成型製程以及AA5052鋁合金製作微流道
(Fabrication of Micro-flow Channel with AA5052 by Low-Pressure Superplastic-like Forming)
相關論文
★ 使用實驗計劃法求得印刷電路板微鑽針最佳鑽孔參數★ 滾針軸承保持架用材料之電鍍氫脆研究
★ 強制氧化及熱機處理對鎂合金AZ91D固相回收製程之研究★ 滾針軸承保持架圓角修正之有限元素分析
★ 透過乾式蝕刻製作新型鍺全包覆式閘極電晶體元件★ 窗型球柵陣列構裝翹曲及熱應力分析
★ 冷軋延對ZK60擠製材的拉伸與疲勞性質之影響★ 熱引伸輔助超塑成形製作機翼整流罩之設計及分析
★ 超塑性鋁合金5083用於機翼前緣整流罩之研究★ 輕合金輪圈疲勞測試與分析
★ 滾針軸承保持架之有限元分析★ 鎂合金之晶粒細化與超塑性研究
★ 平板式固態氧化物燃料電池穩態熱應力分析★ 固態氧化物燃料電池連接板電漿鍍膜特性研究
★ 7XXX系鋁合金添加Sc之顯微組織與機械性質研究★ 高延性鎂合金之特性及成形性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為了要改善燃料電池中釩氧化還原液電池(VRB)的性能,可以藉由增加雙極板中微流道的數量(縱橫比)以及通道的深度提高效率。在諸多研究方法中,製造雙極板中良好縱橫比的微流道,多是以高壓氣吹成型法來進行吹製。為了能以不同吹製方法來得到良好的縱橫比以及成型性之微流道,本研究將探討超塑性成型(superplastic-like forming)採用AA5052鋁合金其中不同低壓壓力以及溫度條件下對最終成形性的影響,本超塑性成型製程為先進行預成形後再用以低壓力氣體吹製成形。另外,藉由ANSYS有限元素模擬軟體進行模擬形成的過程以及結果,來驗證實驗結果以及分析。

本研究結果發現,AA5052鋁合金藉由超塑性成型在溫度450℃以及壓力1MPa的成形條件下,比較其他條件下、流道具有最佳的寬深比(0.5mm厚度以及0.591寬度)。而比起其他成形方式,超塑性成型具有僅利用較低壓力就可以製造金屬二極板微流道的優勢。
摘要(英) One of ways to improve Redox-flow batteries or particularly vanadium Redox flow battery (VRB) performance is by increasing micro-flow channels aspect ratio on bipolar plates. Aspect ratio increments are obtained by the increasing of channel depth. There are many research investigate several methods to produce a high aspect ratio of the micro-flow channel on bipolar plate, but it seems a high pressure required in overall forming method. To produce micro-flow channel with high aspect ratio, this research investigates forming pressure and temperature affect into the final geometry by low-pressure superplastic-like forming of non-superplastic aluminum alloy 5052. In this superplastic-like forming, a hot draw mechanical pre-forming (HDMP) are performed before applied gas blow (superplastic) forming. Furthermore, finite element model by ANSYS LS-DYNA was done to simulate this forming process. The simulation result was used to verify the validity of the experiments result.
The research indicates that the 0.591 aspect ratio of aluminum alloy 5052 micro flow channel with 0.5 thicknesses produced by low pressure superplastic-like forming (450 °C and 1 MPa). Compared to the other forming process, superplastic-like forming has advantage that only low pressure needed to produce micro-flow channel at metallic bipolar plates.
關鍵字(中) ★ 超塑性成型
★ 金屬二極板
★ 微流道
關鍵字(英) ★ superplastic
★ superplastic-like forming
★ metallic bipolar plate
★ micro-flow channels
論文目次 TABLE OF CONTENTS

摘要 i
ABSTRACT ii
LIST OF TABLE vi
LIST OF FIGURE vii
SYMBOL xi
1. INTRODUCTION 1
1.1. Research Background 1
1.2. Problem Statements 1
1.3. Research Objective 2
1.4. Research Scope and Limitation 2
2. LITERATURE REVIEW 3
2.1. Vanadium Redox Flow Battery 3
2.2. Previous Research 5
2.3. Superplastic Forming 6
2.3.1. Superplasticity 7
2.3.2. Conventional Superplastic forming (CSPF) 8
2.3.3. Hot Draw Mechanical Pre-forming (HDMP) 9
2.3.4. Constitutive Model 10
2.4. ANSYS LS-DYNA Finite Element Analysis 12
3. RESEARCH METHOD 18
3.1. Experimental Setup 18
3.1.1. Experimental Machine and Tools 18
3.1.2. Work piece and Dimension 18
3.1.3. Die Material and Dimension 19
3.1.4. Experimental Parameter and process 19
3.2. Finite Element Analysis Setup 20
4. RESULT AND DISCUSSION 29
4.1. Result at constant forming pressure and varies forming temperature 29
4.2. Result at constant forming temperature and varies forming pressure 31
4.3. Thickness distribution 33
5. SUMMARY 56
REFERENCES 57
參考文獻 [1] L. Li, S. Kim, W. Wang, M. Vijayakumar, Z. Nie, B. Chen, J. Zhang, G. Xia, J. Hu, G. Graff, J. Liu, Z. Yang, Advanced Energy Materials, 1 (2011) 394-400.
[2] G. Kear, A.A. Shah, F.C. Walsh, International Journal of Energy Research, 36 (2012) 1105-1120.
[3] J.-C. Hung, T.-C. Yang, K.-C. Li, Journal of Power Sources, 196 (2011) 2070-2074.
[4] A.P. Manso, F.F. Marzo, M.G. Mujika, J. Barranco, A. Lorenzo, International Journal of Hydrogen Energy, 36 (2011) 6795-6808.
[5] S. Isaac, L. Se-Hee, Battery Energy Storage, Large Energy Storage Systems Handbook, CRC Press, 2011, pp. 153-179.
[6] R.A. Huggins, Energy Storage, Springer, 2010.
[7] S. Karimi, N. Fraser, B. Roberts, F.R. Foulkes, Advances in Materials Science and Engineering, 2012 (2012) 22.
[8] Y. Hung, H. Tawfik, D. Mahajan, Journal of Power Sources, 186 (2009) 123-127.
[9] S.J. Lee, C.Y. Lee, K.T. Yang, F.H. Kuan, P.H. Lai, Journal of Power Sources, 185 (2008) 1115-1121.
[10] Y. Liu, L. Hua, J. Lan, X. Wei, Journal of Power Sources, 195 (2010) 8177-8184.
[11] Y. Liu, L. Hua, Journal of Power Sources, 195 (2010) 3529-3535.
[12] S.S. Lim, Y.T. Kim, C.G. Kang, Int J Adv Manuf Technol, 65 (2013) 231-238.
[13] S. Mahabunphachai, Ö.N. Cora, M. Koç, Journal of Power Sources, 195 (2010) 5269-5277.
[14] S. Mahabunphachai, M. Koç, Journal of Power Sources, 175 (2008) 363-371.
[15] J.-C. Hung, C.-C. Lin, Journal of Power Sources, 206 (2012) 179-184.
[16] G. Palumbo, A. Piccininni, Int J Adv Manuf Technol, 69 (2013) 731-742.
[17] N. Chandra, S.C. Rama, Z. Chen, Materials Transactions, JIM, 40 (1999) 723-736.
[18] Y. Luo, S.G. Luckey, P.A. Friedman, Y. Peng, International Journal of Machine Tools and Manufacture, 48 (2008) 1509-1518.
[19] Y. Luo, S.G. Luckey, W.B. Copple, P.A. Friedman, J. of Materi Eng and Perform, 17 (2008) 142-152.
[20] F. Yang, W. Yang, Scripta Materialia, 61 (2009) 919-922.
[21] C.M. Hu, C.M. Lai, P.W. Kao, N.J. Ho, J.C. Huang, Materials Characterization, 61 (2010) 1043-1053.
[22] F. Jarrar, M. Liewald, P. Schmid, A. Fortanier, J. of Materi Eng and Perform, 23 (2014) 1313-1320.
[23] L. Carrino, G. Giuliano, G. Napolitano, Finite Elements in Analysis and Design, 39 (2003) 1083-1093.
[24] G. Luckey Jr, P. Friedman, K. Weinmann, Journal of Materials Processing Technology, 209 (2009) 2152-2160.
[25] J. Liu, M.-J. Tan, Y. Aue-u-lan, A.W. Jarfors, K.-S. Fong, S. Castagne, Int J Adv Manuf Technol, 52 (2011) 123-129.
[26] T. Altan, S.I. Oh, H.L. Gegel, Metal forming: fundamentals and applications, American Society for Metals, 1983.
[27] Z. Marciniak, J.L. Duncan, S.J. Hu, Mechanics of Sheet Metal Forming, Butterworth-Heinemann, 2002.
[28] http://www.tech-etch.com/photoetch/fuelcell.html, 2014.
[29] A.J. Barnes, J. of Materi Eng and Perform, 16 (2007) 440-454.
[30] A.S.M.I.H. Committee, ASM International.
指導教授 李雄(Shyong Lee) 審核日期 2014-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明