參考文獻 |
[1.1] W.R. Grove, “On Voltaic Series and the Combination of Gases by Platinum”, Philosophical Magazine Series 3, Vol. 14, pp. 127-130, (1839).
[1.2] J. Larminie and A. Dicks, Fuel Cell Systems Explained, 2nd edition, John Wiely & Sons Inc., NY, USA, (2003).
[1.3] S.M. Haile, “Fuel Cell Materials and Components”, Acta Materialia, Vol. 51, 2003, pp. 5981-6000, (2003).
[1.4] J. Larminie and A. Dicks, Fuel Cell Systems Explained, 1nd edition, John Wiely & Sons Inc., England, (2000).
[1.5] A. Weber and E. Ivers-Tiffée, “Materials and Concepts for Solid Oxide Fuel Cells (SOFCs) in Stationary and Mobile Applications”, Journal of Power Sources, Vol. 127, pp. 273-283, (2004).
[1.6] A.L. Lee, R. F. Zabransky, and W. J. Huber, “Internal Reforming Development for Solid Oxide Fuel Cells”, Industrial & Engineering Chemistry Research, Vol. 29, pp. 766-773, (1990).
[1.7] L.M. Zhang and W.S. Yang, “Direct Ammonia Solid Oxide Fuel Cell Based on Thin Proton-conducting Electrolyte”, Journal of Power Sources, Vol. 179, pp. 92-95, (2008).
[1.8] M. Zunic, L. Chevallier, A. Radojkovic, G. Brankovic, Z. Brankovic, and E.D. Bartolomeo, “Influence of the Ratio Between Ni and BaCe0.9Y0.1O3-δ on Microstructural and Electrical Properties of Proton Conducting Ni-BaCe0.9Y0.1O3-δ Anodes”, Journal of Alloys and Compounds, Vol. 509, pp. 1157-1162, (2011).
[1.9] B.H. Rainwater, M.F. Liu, and M.L. Liu, “A More Efficient Anode Microstructure for SOFCs Based on Proton Conductors”, International Journal of Hydrogen Energy, Vol. 37, pp. 18342-18348, (2012).
[1.10] L. Bi, E. Fabbri, and E. Traversa, “Effect of Anode Functional Layer on the Performance of Proton-conducting Solid Oxide Fuel Cells (SOFCs)”, Electrochemistry Communications, Vol. 16, pp. 37-40, (2012).
[1.11] K. Xie, R.Q. Yan, and X.Q. Liu, “A Novel Anode Supported BaCe0.4Zr0.3Sn0.1Y0.2O3-δ Electrolyte Membrane for Proton Conducting Solid Oxide Fuel Cells”, Electrochemistry Communications, Vol. 11, 1618-1622, (2009).
[1.12] H. Moon, S.D. Kim, E.W. Park, S.H. Hyun, and H.S. Kim, “Characteristics of SOFC Single Cells with Anode Active Layer via Tape Casting and Co-firing”, International Journal of Hydrogen energy, Vol. 33, pp. 2826-2833, (2008).
[1.13] Z.H. Chen, R. Ran, W. Zhou, Z.P. Shao, and S.M. Liu, “Assessment of Ba0.5Sr0.5Co1-yFeyO3-δ (y = 0.0-1.0) for Prospective Application as Cathode for IT-SOFCs or Oxygen Permeating Membrane”, Electrochimica Acta, Vol. 52, pp. 7343-7351, (2007).
[1.14] C.A.J. Fisher, M. Yoshiya, Y. Iwamoto, J. Ishii, M. Asanuma, and K. Yabuta, “Oxide Ion Diffusion in Perovskite-structured Ba1-xSrxCo1-yFeyO2.5: A Molecular Dynamics Study”, Solid State Ionics, Vol. 177, pp. 3425-3431, (2007).
[1.15] W. Zhou, R. Ran, Z.P. Shao, R. Cai, W.Q. Jin, N.P. Xu, and J.M. Ahn, “Electrochemical Performance of Silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-δ Cathodes Prepared via Electroless Deposition”, Electrochimica Acta, Vol. 53, pp. 4370-4380, (2008).
[1.16] B. Wei, Z. Lü, X.Q. Huang, J.P. Miao, X.Q. Sha, X.S. Xin, and W.H. Su, “Crystal Structure, Thermal Expansion and Electrical Conductivity of Perovskite Oxides BaxSr1-xCo0.8Fe0.2O3-δ (0.3 ≤ x ≤ 0.7)”, Journal of the European Ceramic Society, Vol. 26, pp. 2827-2832, (2006).
[1.17] Y. Lin, R. Ran, Y. Zheng, Z.P. Shao, W.Q. Jin, N.P. Xu, and J.M. Ahn, “Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3-δ as a Potential Cathode for Ananode-supported Proton-conducting Solid-oxide Fuel Cell”, Journal of Power Sources, Vol. 180, pp. 15-22, (2008).
[1.18] W. Zhou, R. Ran, R. Cai, Z.P. Shao,W.Q. Jin, and N. P. Xu, “Effect of a Reducing Agent for Silver on the Electrochemical Activity of an Ag/Ba0.5Sr0.5Co0.8Fe0.2O3-δ Electrode Prepared by Electroless Deposition Technique”, Journal of Power Sources, Vol. 186, pp. 244-251, (2009).
[1.19] Z.J. Yang, W.B. Wang, J. Xiao, H.M. Zhang, F. Zhang, G.L. Ma, and Z.F. Zhou, “A Novel Cobalt-free Ba0.5Sr0.5Fe0.9Mo0.1O3-δ-BaZr0.1Ce0.7Y0.2O3-α Composite Cathode for Solid Oxide Fuel Cells”, Journal of Power Sources, Vol. 204, pp. 89-93, (2012).
[1.20] B. Lin, H.P. Ding, Y.C. Dong, S.L. Wang, X.Z. Zhang, D.R. Fang, and GY Meng, “Intermediate-to-low Temperature Protonic Ceramic Membrane Fuel Cells with Ba0.5Sr0.5Co0.8Fe0.2O3-δ-BaZr0.1Ce0.7Y0.2O3-δ Composite Cathode”, Journal of Power Sources, Vol. 186, pp. 58-61, (2009).
[1.21] L. Zhao, B.B. He, Y.H. Ling, Z.Q. Xun, R.R. Peng, G.Y. Meng, and XQ Liu, “Cobalt-free Oxide Ba0.5Sr0.5Fe0.8Cu0.2O3-δ for Proton-conducting Solid Oxide Fuel Cell Cathode”, International Journal of Hydrogen Energy, Vol. 35, pp. 3769-3774, (2010).
[1.22] J.W. Wu and X.B. Liu, “Recent Development of SOFC Metallic Interconnect”, Journal of Materials Science & Technology, Vol. 26, pp. 293-305, (2010).
[1.23] E. Konysheva, U. Seeling, A. Besmehn, L. Singheiser, and K. Hilpert, “Chromium Vaporization of the Ferritic Steel Crofer22APU and ODS Cr5Fe1Y2O3 alloy”, Journal of Materials Science, Vol. 42, pp. 5778-5784, (2007).
[1.24] Z.G. Yang, G.G. Xia, P. Singh, and J.W. Stevenson, “Electrical Contacts Between Cathodes and Metallic Interconnects in Solid Oxide Fuel Cells”, J. Power Sources, Vol. 155, pp. 246-252, (2006).
[1.25] Y.D. Zhen, S.P. Jiang, S. Zhang, and V. Tan, “Interaction Between Metallic Interconnect and Constituent Oxides of (La, Sr)MnO3 Coating of Solid Oxide Fuel Cells”, Journal of the European Ceramic Society, Vol. 26, pp. 3253-3264, (2006).
[1.26] B.C.H. Steele and A. Heinzel, “Materials for Fuel-cell Technologies”, Nature, Vol. 414, pp. 345-352, (2001).
[1.27] T. Horita, H. Kishimoto, K. Yamaji, N. Sakai, Y.P. Xiong, M.E. Brito, and H. Yokokawa, “Effects of Silicon Concentration in SOFC Alloy Interconnects on the Formation of Oxide Scales in Hydrocarbon Fuels”, Journal of Power Sources, Vol. 157, pp. 681-687, (2006).
[1.28] H.S. Seo, G. Jin, J.H. Jun, D.H. Kim, and K.Y. Kim, “Effect of Reactive Elements on Oxidation Behaviour of Fe-22Cr-0.5Mn Ferritic Stainless Steel for a Solid Oxide Fuel Cell Interconnect”, Journal of Power Sources, Vol. 178, pp. 1-8, (2008).
[1.29] Z.G. Yang, K.S. Weil, D.M. Paxton, and J.W. Stevenson, “Selection and Evaluation of Heat-resistant Alloys for SOFC Interconnect Applications”, Journal of The Electrochemical Society, Vol. 150, pp. A1188-A1201, (2003).
[1.30] J. Li, J. Pu, J.Z. Xiao, and X.L. Qian, “Oxidation of Haynes 230 alloy in Reduced Temperature Solid Oxide Fuel Cell Environments”, Journal of Power Sources, Vol. 139, pp. 182-187, (2005).
[1.31] J. Pu, J. Li, B. Hua, and G.Y. Xie, “Oxidation Kinetics and Phase Evolution of a Fe-16Cr Alloy in Simulated SOFC Cathode Atmosphere”, Journal of Power Sources, Vol. 158, pp. 354-360, (2006).
[1.32] S.H. Kim, J.Y. Huh, J.H. Jun, J.H. Jun, and J. Favergeon, “Thin Elemental Coatings of Yttrium, Cobalt, and Yttrium/cobalt on Ferritic Stainless Steel for SOFC Interconnect Applications”, Current Applied Physics, Vol. 10, pp. S86-S90, (2010).
[1.33] Y. Liu and D.Y. Chen, “Protective Coatings for Cr2O3-forming Interconnects of Solid Oxide Fuel Cells”, International Journal of Hydrogen Energy, Vol. 34, pp. 9220-9226, (2009).
[1.34] H. Inaba and H. Tagawa, “Ceria-based Solid Electrolytes”, Solid State Ionics, Vol. 83, pp.1-16, (1996).
[1.35] S.M. Haile, G. Staneff, and K.H. Ryu, “Non-stoichiometry, Grain Boundary Transport and Chemical Stability of Proton Conducting Perovskites” Journal of Materials Science, Vol. 36, pp. 1149-1160, (2001).
[1.36] A. Arabacı and M.F. Öksüzömer, “Preparation and Characterization of 10 mol% Gd Doped CeO2 (GDC) Electrolyte for SOFC Applications”, Ceramics International, Vol. 38, pp. 6509-6515, (2012).
[1.37] L.P. Li and J.C. Nino, “Ionic Conductivity Across the Disorder-order Phase Transition in the SmO1.5-CeO2 System”, Journal of the European Ceramic Society, Vol. 32, pp. 3543-3550, (2012).
[1.38] X.C. Liu, R.Z. Hong, and C.S. Tian, “Tolerance Factor and the Stability Discussion of ABO3-type Ilmenite”, Journal of Materials Science: Materials in Electronics, Vol. 20, pp. 323-327, (2009).
[1.39] T. Takahashi and H. Iwahara, “Ionic Conduction in Perovskite-type Oxide Solid Solution and Its Application to the Solid Electrolyte Fuel Cell”, Energy Conversion, Vol. 11, pp. 105-111, (1971).
[1.40] T. Schober, F. Krug, and W. Schilling, “Criteria for the Application of High Temperature Proton Conductors in SOFCs”, Solid State Ionics, Vol. 97, pp. 369-373, (1997).
[1.41] T. Norby and Y. Larring, “Concentration and Transport of Protons in Oxides”, Current Opinion in Solid State and Materials Science, Vol. 2, pp. 593-599, (1997).
[1.42] K.D. Kreuer, “Proton-conducting Oxides”, Annual Review of Materials Research, Vol. 33, pp. 333-359, (2003).
[1.43] H. Iwahara, H. Uchida, K. Ono, and K. Ogaki, “Proton Conduction in Sintered Oxides Based on BaCeO3”, Journal of The Electrochemical Society, Vol. 135, pp. 529-533, (1988).
[1.44] H. Iwahara, H. Uchida, and K. Morimoto, “High Temperature Solid Electrolyte Fuel Cells Using Perovskite Type Oxide Based on BaCeO3”, Journal of The Electrochemical Society, Vol. 137, pp. 462-465, (1990).
[1.45] K.D. Kreuer, “Aspects of the Formation and Mobility of Protonic Charge Carriers and the Stability of Perovskite-type Oxides”, Solid State Ionics, Vol. 125, pp. 285-302, (1999).
[1.46] C.D. Savaniu, J. Canales-Vazquez, and J.T.S. Irvine, “Investigation of Pproton Conducting BaZr0.9Y0.1O2.95:BaCe0.9Y0.1O2.95 Core-shell Structures”, Journal of Materials Chemistry, Vol. 15, pp. 598-604, (2005).
[1.47] C.W. Tanner and A.V. Virkar, “Instability of BaCeO3 in H2O-containing Atmospheres”, Journal of The Electrochemical Society, Vol. 143, pp.1386-1389, (1996).
[1.48] S. Gopalan and A.V. Virkar, “Thermodynamic Stabilities of SrCeO3 and BaCeO3 Using a Molten Salt Method and Galvanic Cells”, Journal of The Electrochemical Society, Vol. 140, pp. 1060-1065, (1993).
[1.49] F.L. Chen, O.T. Sørensen, G.Y. Meng, and D.K. Peng, “Chemical Stability Study of BaCe0.9Nd0.1O3-δ High-temperature Proton-conducting Ceramic”, Journal of Materials Chemistry, Vol. 7, pp. 481-485, (1997).
[1.50] H. Matsumoto, Y. Kawasaki, N. Ito, M. Enoki, and T. Ishihara, “Relation Between Electrical Conductivity and Chemical Stability of BaCeO3-Based Proton Conductors with Different Trivalent Dopants”, Electrochemical and Solid-State Letters, Vol. 10, pp. B77-B80, (2007).
[1.51] K. Katahira, Y. Kohchi, T. Shimura, and H. Iwahara, “Protonic Conduction in Zr-substituted BaCeO3” Solid State Ionics, Vol. 138, pp. 91-98, (2000).
[1.52] J. Liang, L.L. Mao, L. Li, and W.H. Yuan, “Protonic and Electronic Conductivities and Hydrogen Permeation of SrCe0.95-xZrxTm0.05O3-δ (0≤x≤0.40) Membrane”, Chinese Journal of Chemical Engineering, Vol. 18, pp. 506-510, (2010).
[1.53] S. Ricote, N. Bonanos, A. Manerbino, and W.G. Coors, “Conductivity Study of Dense BaCexZr(0.9-x)Y0.1O(3-δ) Prepared by Solid State Reactive Sintering at 1500 ℃”, International Journal of Hydrogen Energy, Vol. 37, pp. 7954-7961, (2012).
[1.54] A.S. Patnaik and A.V. Virkar, “Transport Properties of Potassium-doped BaZrO3 in Oxygen- and Water-vapor-containing Atmospheres”, Journal of The Electrochemical Society, Vol. 153, pp. A1397-A1405, (2006).
[1.55] E. Gorbova, V. Maragou, D. Medvedev, A. Demin, and P. Tsiakaras, “Investigation of the Protonic Conduction in Sm Doped BaCeO3”, Journal of Power Sources, Vol. 181, pp. 207-213, (2008).
[1.56] E. Gorbova, V. Maragou, D. Medvedev, A. Demin, and P. Tsiakaras, “Influence of Cu on the Properties of Gadolinium-doped Barium Cerate”, Journal of Power Sources, Vol. 181, pp. 292-296, (2008).
[1.57] A. Radojković, M. Žunić, S.M. Savić, G. Branković, and Z. Branković, “Chemical Stability and Electrical Properties of Nb Doped BaCe0.9Y0.1O3-δ as a High Temperature Proton Conducting Electrolyte for IT-SOFC”, Ceramics International, Vol. 39, pp. 307-313, (2013).
[1.58] P. Pasierb, M. Wierzbicka, S. Komornicki, and M. Rekas, “Electrochemical Impedance Spectroscopy of BaCeO3 Modified by Ti and Y”, Journal of Power Sources, Vol. 194, pp. 31-37, (2009).
[1.59] Y.Z. Wang, A. Chesnaud, E. Bevillon, J.L. Yang, and G. Dezanneau, “Synthesis, Structure and Protonic Conduction of BaSn0.875M0.125O3-δ (M = Sc, Y, In and Gd)”, International Journal of Hydrogen Energy, Vol. 36, pp. 7688-7695, (2011).
[1.60] L.G. Qiu, G.L. Ma, and D.J. Wen, “Ionic Conduction in BaxCe0.8Er0.2O3-α”, Solid State Ionics, Vol. 166, pp. 69-75, (2004).
[1.61] C.T.G. Petit and S.W. Tao, “Structure and Conductivity of Praseodymium and Yttrium Co-doped Barium Cerates”, Solid State Sciences, Vol. 17, pp. 115-121, (2013).
[1.62] M.S. Islam, “Ionic Transport in ABO3 Perovskite Oxides: A Computer Modelling Tour”, Journal of Materials Chemistry, Vol. 10, pp.1027-1038, (2000).
[1.63] K.D. Kreuer, “Proton Conductivity: Material and Applications”, Chemistry of Materials, Vol. 8, pp. 610-641, (1996).
[1.64] T. Norby, M. Widerøe, R. Glöckner, and Y. Larring, “Hydrogen in Oxides”, Dalton Transactions, Vol. 19, pp. 3012-3018, (2004).
[3.1] Y.M. Guo, Y. Lin, R. Ran, and Z.P. Shao, “Zirconium Doping Effect on the Performance of Proton-conducting BaZryCe0.8-yY0.2O3-δ (0.0 ≤ y ≤ 0.8) for Fuel Cell Applications”, Journal of Power Sources, Vol. 193, pp. 400-407, (2009).
[3.2] E. Fabbri, A. D’Epifanio, E.D. Bartolomeo, S. Licoccia, and E. Traversa, “Tailoring the Chemical Stability of Ba(Ce0.8-xZrx)Y0.2O3-δ Protonic Conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs)”, Solid State Ionics, Vol. 179, pp. 558-564, (2008).
[3.3] N.H. Perry, S. Kim, and T.O. Mason, “Local Electrical and Dielectric Properties of Nanocrystalline Yttria-stabilized Zirconia”, Journal of Materials Science, Vol. 43, pp. 4684-4692, (2008).
[3.4] I.M. Hung, H.W. Peng, S.L. Zheng, C.P. Lin, and J.S. Wu, “Phase Stability and Conductivity of Ba1-ySryCe1-xYxO3-δ Solid Oxide Fuel Cell Electrolyte”, Journal of Power Sources, Vol. 193, pp. 155-159, (2009).
[3.5] H. Iwahara, “Technological Challenges in the Application of Proton Conducting Ceramics”, Solid State Ionics, Vol. 77, pp. 289-298, (1995).
[3.6] S.L. Gao, X.W. Yang, D.H. Ren, and Q.Z. Shi, “Thermochemical Properties of Complexes of Rare Earth Nitrate with Glycine”, Thermochimica Acta, Vol. 287, pp. 177-182, (1996).
[3.7] R.L. Frost and J.M. Bouzaid, “Raman Spectroscopy of Dawsonite NaAl(CO3)(OH)2”, Journal of Raman Spectroscopy, Vol. 38, pp. 873-879, (2007).
[4.1] Y. Zeng, P.L. Mao, S.P. Jiang, P. Wu, L. Zhang, and P. Wu, “Prediction of Oxygen Ion Conduction from Relative Coulomb Electronic Interactions in Oxyapatites”, Journal of Power Sources, Vol. 196, pp. 4524-4532, (2011).
[4.2] C.S. Tu, R.R. Chien, V.H. Schmidt, S.C. Lee, C.C. Huang, and C.L. Tsai, “Thermal Stability of Ba(Zr0.8-xCexY0.2)O2.9 Ceramics in Carbon Dioxide”, Journal of Applied Physics, Vol. 105, p. 103504, (2009).
[4.3] R.O. Fuentes and R.T. Baker, “Synthesis and Properties of Gadolinium-doped Ceria Solid Solutions for IT-SOFC Electrolytes”, International Journal of Hydrogen Energy, Vol. 33, pp. 3480-3484, (2008).
[4.4] Y.M. Guo, Y. Lin, R. Ran, and Z.P. Shao, “Zirconium Doping Effect on the Performance of Proton-conducting BaZryCe0.8-yY0.2O3-δ (0.0 ≤ y ≤ 0.8) for Fuel Cell Applications”, Journal of Power Sources, Vol. 193, pp. 400-407, (2009).
[4.5] J. Lv, L. Wang, D. Lei, H. Guo, and R.V. Kumar, “Sintering, Chemical Stability and Electrical Conductivity of the Perovskite Proton Conductors BaCe0.45Zr0.45M0.1O3-δ (M = In, Y, Gd, Sm)”, Journal of Alloys and Compounds, Vol. 467, pp. 376-382, (2009).
[4.6] A.K. Azad and J.T.S. Irvine, “Synthesis, Chemical Stability and Proton Conductivity of the Perovksites Ba(Ce, Zr)1-xScxO3-δ”, Solid State Ionics, Vol. 178, pp. 635-640, (2007).
[4.7] K. Xie, Q.L. Ma, B. Lin, Y.Z. Jiang, J.F. Gao, X.Q. Liu, and G.Y. Meng, “An Ammonia Fuelled SOFC with a BaCe0.9Nd0.1O3-δ Thin Electrolyte Prepared with a Suspension Spray”, Journal of Power Sources, Vol. 170, pp. 38-41, (2007).
[4.8] I.M. Hung, H.W. Peng, S.L. Zheng, C.P. Lin, and J.S. Wu, “Phase Stability and Conductivity of Ba1-ySryCe1-xYxO3-δ Solid Oxide Fuel Cell Electrolyte”, Journal of Power Sources, Vol. 193, pp. 155-159, (2009).
[4.9] N.H. Perry, S. Kim, and T.O. Mason, “Local Electrical and Dielectric Properties of Nanocrystalline Yttria-stabilized Zirconia”, Journal of Materials Science, Vol. 43, pp. 4684-4692, (2008).
[4.10] R.R. Chien, C.S. Tu, V.H. Schmidt, S.C. Lee, and C.C. Huang, “Synthesis and Characterization of Proton-conducting Ba(Zr0.8-xCexY0.2)O2.9 ceramics”, Solid State Ionics, Vol. 181, pp. 1251-1257, (2010).
[4.11] R.Q. Long, Y.P. Huang, and H.L. Wan, “Surface Oxygen Species over Cerium Oxide and Their Reactivities with Methane and Ethane by Means of In Situ Confocal Microprobe Raman Spectroscopy”, Journal of Raman Spectroscopy, Vol. 28, pp. 29-32, (1997).
[4.12] B.K. Kim and H.O. Hamaguchi, “Mode Assignments of the Raman Spectrum of Monoclinic Zirconia by Isotopic Exchange Technique”, Physica Status Solidi B, Vol. 203, pp. 557-563, (1997).
[5.1] C.S. Tu, R.R. Chien, V.H. Schmidt, S.C. Lee, C.C. Huang, and C.L. Tsai, “Thermal Stability of Ba(Zr0.8-xCexY0.2)O2.9 Ceramics in Carbon Dioxide”, Journal of Applied Physics, Vol. 105, p. 103504, (2009).
[5.2] Y. Zeng, P.L. Mao, S.P. Jiang, P. Wu, L. Zhang, and P. Wu, “Prediction of Oxygen Ion Conduction from Relative Coulomb Electronic Interactions in Oxyapatites”, Journal of Power Sources, Vol. 196, pp. 4524-4532, (2011).
[5.3] J.S. Park, J.K. Lee, and K.S. Hong, “The Effect of Alkali Niobate Addition on the Phase Stability and Dielectric Properties of Pb(Zn1/3Nb2/3)O3 Based Ceramic”, Journal of Applied Physics, Vol. 101, pp. 114101-114107, (2007).
[5.4] X.C. Liu, R.Z. Hong, and C.S. Tian, “Tolerance Factor and the Stability Discussion of ABO3-type Ilmenite”, Journal of Materials Science: Materials in Electronics, Vol. 20, pp. 323-327, (2009).
[5.5] A.S. Patnaik and A.V. Virkar, “Transport Properties of Potassium-doped BaZrO3 in Oxygen- and Water-vapor-containing Atmospheres”, Journal of The Electrochemical Society, Vol. 153, pp. A1397-A1405, (2006).
[5.6] K.R. Lee, C.J. Tseng, J.K. Chang, I.M. Hung, J.C. Lin, S.W. Lee, “Strontium Doping Effect on Phase Homogeneity and Conductivity of Ba1-xSrxCe0.6Zr0.2Y0.2O3-δ Proton-conducting Oxides”, International Journal of Hydrogen Energy, Vol. 38, pp. 11097-11103, (2013).
[5.7] R.R. Chien, C.S. Tu, V.H. Schmidt, S.C. Lee, and C.C. Huang, “Synthesis and Characterization of Proton-conducting Ba(Zr0.8-xCexY0.2)O2.9 ceramics”, Solid State Ionics, Vol. 181, pp. 1251-1257, (2010).
[5.8] R.Q. Long, Y.P. Huang, and H.L. Wan, “Surface Oxygen Species over Cerium Oxide and Their Reactivities with Methane and Ethane by Means of In Situ Confocal Microprobe Raman Spectroscopy”, Journal of Raman Spectroscopy, Vol. 28, pp. 29-32, (1997).
[5.9] B.K. Kim and H.O. Hamaguchi, “Mode Assignments of the Raman Spectrum of Monoclinic Zirconia by Isotopic Exchange Technique”, Physica Status Solidi B, Vol. 203, pp. 557-563, (1997).
[5.10] J. Lv, L. Wang, D. Lei, H. Guo, and R.V. Kumar, “Sintering, Chemical Stability and Electrical Conductivity of the Perovskite Proton Conductors BaCe0.45Zr0.45M0.1O3-δ (M = In, Y, Gd, Sm)”, Journal of Alloys and Compounds, Vol. 467, pp. 376-382, (2009).
[5.11] A.K. Azad and J.T.S. Irvine, “Synthesis, Chemical Stability and Proton Conductivity of the Perovksites Ba(Ce, Zr)1-xScxO3-δ”, Solid State Ionics, Vol. 178, pp. 635-640, (2007).
[5.12] E. Fabbri, A. D’Epifanio, E.D. Bartolomeo, S. Licoccia, and E. Traversa, “Tailoring the Chemical Stability of Ba(Ce0.8-xZrx)Y0.2O3-δ Protonic Conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs)”, Solid State Ionics, Vol. 179, pp. 558-564, (2008).
[5.13] Y.M. Guo, Y. Lin, R. Ran, and Z.P. Shao, “Zirconium Doping Effect on the Performance of Proton-conducting BaZryCe0.8-yY0.2O3-δ (0.0 ≤ y ≤ 0.8) for Fuel Cell Applications”, Journal of Power Sources, Vol. 193, pp. 400-407, (2009).
[6.1] A.S. Patnaik and A.V. Virkar, “Transport Properties of Potassium-doped BaZrO3 in Oxygen- and Water-vapor-containing Atmospheres”, Journal of The Electrochemical Society, Vol. 153, pp. A1397-A1405, (2006).
[6.2] I.M. Hung, H.W. Peng, S.L. Zheng, C.P. Lin, and J.S. Wu, “Phase Stability and Conductivity of Ba1-ySryCe1-xYxO3-δ Solid Oxide Fuel Cell Electrolyte”, Journal of Power Sources, Vol. 193, pp. 155-159, (2009).
[6.3] K.R. Lee, C.J. Tseng, J.K. Chang, I.M. Hung, J.C. Lin, S.W. Lee, “Strontium Doping Effect on Phase Homogeneity and Conductivity of Ba1-xSrxCe0.6Zr0.2Y0.2O3-δ Proton-conducting Oxides”, International Journal of Hydrogen Energy, Vol. 38, pp. 11097-11103, (2013).
[6.4] E. Fabbri, A. D’Epifanio, E.D. Bartolomeo, S. Licoccia, and E. Traversa, “Tailoring the Chemical Stability of Ba(Ce0.8-xZrx)Y0.2O3-δ Protonic Conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs)”, Solid State Ionics, Vol. 179, pp. 558-564, (2008).
[6.5] Y.M. Guo, Y. Lin, R. Ran, and Z.P. Shao, “Zirconium Doping Effect on the Performance of Proton-conducting BaZryCe0.8-yY0.2O3-δ (0.0 ≤ y ≤ 0.8) for Fuel Cell Applications”, Journal of Power Sources, Vol. 193, pp. 400-407, (2009).
[6.6] P. Sawant, S. Varma, B.N. Wani, and S.R. Bharadwaj, “Synthesis, Stability and Conductivity of BaCe0.8-xZrxY0.2O3-δ as Electrolyte for Proton Conducting SOFC”, International Journal of Hydrogen Energy, Vol. 37, pp. 3848-3856, (2012).
|