博碩士論文 101323005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:13.59.218.147
姓名 廖佑懷(You-huai Liao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 超音波振動輔助多道次等通道彎角擠製之研究
相關論文
★ 中尺寸LED背光模組之實驗研究★ 利用有限元素法與反應曲面法探討 金屬成型問題之最佳化設計-行星路徑旋轉鍛造傘齒輪為例
★ 以反應曲面法進行行動電話卡勾之最佳化設計★ 以微分式內涵塑性理論分析材料受軸向循環負載之塑性行為
★ A1070在累進式背擠製下的機械性質與微結構之研究★ 超音波輔助沖壓加工之應用-剪切、引伸與等通彎角擠製
★ 應用多體動力學於具循環氣體負載之迴轉式壓縮機振動預測模型建立★ 以有限元素法與反應曲面法分析螺旋傘齒輪之旋轉鍛造最佳化設計
★ 超音波振動輔助鋁合金6061及低碳鋼S15C拉伸試驗之研究★ 旋轉鍛造螺旋齒輪製程分析
★ 等通道扭轉彎角擠製之有限元素法及反應曲面法分析★ 以有限元素法與反應曲面法分析增量式板金成形
★ 以有限元素法與反應曲面法分析螺旋傘齒輪之雙錐輥旋轉鍛造最佳化設計★ 以有限元素法與反應曲面法分析兩點增量成形
★ 引伸成形加工問題之有限元素分析★ 應用流函數法分析軸對稱熱擠製加工問題
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文探討超音波振動對於多道次等通道彎角擠製(multi-pass ECAE)之效應。藉由改變沖頭軸向超音波振幅進行三種路徑(Route A、B、C)的四道次ECAE擠製,觀察沖頭負載與擠錠機械性質之效應。並以有限元素模擬軟體Deform-3D分析多道次之成形負載驗證與超音波振動沖頭負載之變化。實驗結果顯示超音波振動對於降低ECAE成形負載有良好的效果,軸向超音波加載可使擠錠之硬度略微提升,並且可以大幅改善路徑B的硬度均勻性。有限元素模擬結果顯示,應用Deform-3D模擬分析超音波振動輔助與多道次ECAE之結果與實驗之結果具有良好的相似性。
摘要(英) This paper investigates the axial ultrasonic vibration assisted multi-pass equal channel angular extrusion by experiment and FEM simulation.
Experimentally change three different route (Route A, Route B and Route C) and ultrasonic applied or not to investigate the forming load, billet′s hardness and surface roughness.
Experiment results show that application of ultrasonic vibration can make reduction of forming load of multi-pass ECAE processes. While in the condition of route B and route C, ultrasonic vibration make billet′s hardness distribution more uniformly.
Furthermore, using FEM software Deform-3D to simulated load-stroke curve and load were also compared with the experimentally recorded load-stroke curve and load. Simulation results show that good conformity is observed between the FEM simulation and experimental results.
關鍵字(中) ★ 超音波
★ 等通彎角擠製
★ 路徑
關鍵字(英)
論文目次 摘要 i
Abstractii
致謝 iii
符號表 iv
目錄 vi
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究目的與動機 10
第二章 基本理論 11
2.1 等通道彎角擠製(ECAE)製程 11
2.2 多道次ECAE 12
2.3 超音波塑性加工原理 15
2.3.1 超音波加工理論 15
2.3.2 超音波降低介面摩擦應力之機制 15
第三章 實驗設備與方法 22
3.1 實驗設備 22
3.2 實驗方法 30
3.2.1 試片材料 30
3.2.2 實驗條件 30
3.3 實驗步驟 31
3.4 實驗量測 33
3.4.1 顯微維克氏硬度計量測 33
3.4.2 表面粗糙度量測 34
第四章 實驗結果與討論 35
4.1 超音波振動對多道次ECAE成形力之影響 35
4.2 ECAE擠錠硬度之影響 42
4.2.1 多道次ECAE擠錠硬度 43
4.2.2 多道次ECAE擠錠硬度均勻性 44
4.2.3 超音波振動之多道次ECAE擠錠硬度 51
4.2.4 超音波振動對硬度均勻性之影響 57
4.3 超音波振動對四道次ECAE擠錠表面粗糙度之影響 60
4.4 有限元素分析 64
4.4.1 前言 64
4.4.2 應用DEFORM-3D於超音波輔助ECAE之操作程序 66
4.5 超音波輔助多道次ECAE有限元素模擬與實驗驗證 72
4.5.1 多道次ECAE模擬 72
4.5.2 實驗驗證 79
4.5.3 超音波振動加載驗證 81
4.5.4 有限元素模型檢驗臨界速度 82
第五章 結論與建議 85
5.1 結論 85
5.2 建議 86
參考文獻 87
附錄 91
參考文獻 [1] Segal V.M. (1995), “Materials processing by simple shear”, Materials Science and Engineering: A 197, 157-164
[2] Furukawa, M., Iwahashi, Y., Horita, Z., Nemoto, M., & Langdon, T. G. (1998). “The shearing characteristics associated with equal-channel angular pressing.” Materials Science and Engineering: A, 257(2), 328-332.
[3] Furukawa, M., Horita, Z., & Langdon, T. G. (2002). “Factors influencing the shearing patterns in equal-channel angular pressing.” Materials Science and Engineering: A, 332(1), 97-109.
[4] Sun, P. L., Yu, C. Y., Kao, P. W., & Chang, C. P. (2002). “Microstructural characteristics of ultrafine-grained aluminum produced by equal channel angular extrusion.” Scripta materialia, 47(6), 377-381.
[5] Sun, P. L., Kao, P. W., & Chang, C. P. (2004). “Effect of deformation route on microstructural development in aluminum processed by equal channel angular extrusion.” Metallurgical and Materials Transactions A, 35(4), 1359-1368.
[6] Kim, W. J., & Namkung, J. C. (2005). “Computational analysis of effect of route on strain uniformity in equal channel angular extrusion.” Materials Science and Engineering: A, 412(1), 287-297.
[7] Kim, W. J., Namgung, J. C., & Kim, J. K. (2005). “Analysis of strain uniformity during multi-pressing in equal channel angular extrusion.” Scripta materialia,53(3), 293-298.
[8] Jiang, H., Fan, Z., & Xie, C. (2008). “3D finite element simulation of deformation behavior of CP-Ti and working load during multi-pass equal channel angular extrusion.” Materials Science and Engineering: A, 485(1), 409-414.
[9] El-Danaf, E. A., Soliman, M. S., Almajid, A. A., & El-Rayes, M. M. (2007). “Enhancement of mechanical properties and grain size refinement of commercial purity aluminum 1050 processed by ECAP.” Materials Science and Engineering: A, 458(1), 226-234.
[10] El-Danaf, E. A. (2008). “Mechanical properties and microstructure evolution of 1050 aluminum severely deformed by ECAP to 16 passes.”Materials Science and Engineering: A, 487(1), 189-200.
[11] Poortmans, S., Duchêne, L., Habraken, A. M., & Verlinden, B. (2009). “Modelling compression tests on aluminium produced by equal channel angular extrusion.” Acta Materialia, 57(6), 1821-1830.
[12] Eivani, A. R., Ahmadi, S., Emadoddin, E., Valipour, S., & Karimi Taheri, A. (2009). “The effect of deformations passes on the extrusion pressure in axi-symmetric equal channel angular extrusion.” Computational Materials Science,44(4), 1116-1125.
[13] Nagasekhar, A. V., Yoon, S. C., Tick-Hon, Y., & Kim, H. S. (2009). An experimental verification of the finite element modelling of equal channel angular pressing. Computational Materials Science, 46(2), 347-351.
[14] Kim, K. J., Yang, D. Y., & Yoon, J. W. (2010). “Microstructural evolution and its effect on mechanical properties of commercially pure aluminum deformed by ECAE (Equal Channel Angular Extrusion) via routes A and C.” Materials Science and Engineering: A, 527(29), 7927-7930.
[15] Aydın, M. (2012). “High-cycle fatigue behavior of severe plastically deformed binary Zn–60Al alloy by equal-channel angular extrusion.” Journal of Materials Processing Technology, 212(8), 1780-1789.
[16] Pasierb, A., & Wojnar, A. (1992). “An experimental investigation of deep drawing and drawing processes of thin-walled products with utilization of ultrasonic vibrations.” Journal of Materials Processing Technology, 34(1), 489-494.
[17] Siegert, K., & Möck, A. (1996). “Wire drawing with ultrasonically oscillating dies.” Journal of Materials Processing Technology, 60(1), 657-660.
[18] Petruzelka, J., Sarmanova, J., & Sarman, A. (1996). “The effect of ultrasound on tube drawing.” Journal of materials processing technology, 60(1), 661-668.
[19] Hung, J. C., & Hung, C. (2005). “The influence of ultrasonic-vibration on hot upsetting of aluminum alloy.” Ultrasonics, 43(8), 692-698.
[20] Suh, C. M., Song, G. H., Suh, M. S., & Pyoun, Y. S. (2007). “Fatigue and mechanical characteristics of nano-structured tool steel by ultrasonic cold forging technology.” Materials Science and Engineering: A, 443(1), 101-106.
[21] Ashida, Y., & Aoyama, H. (2007). “Press forming using ultrasonic vibration.” Journal of Materials Processing Technology, 187, 118-122.
[22] Ting, W., Dongpo, W., Gang, L., Baoming, G., & Ningxia, S. (2008). “Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing.” Applied Surface Science, 255(5), 1824-1829.
[23] Liu, Y., Suslov, S., Han, Q., Xu, C., & Hua, L. (2012). “Microstructure of the pure copper produced by upsetting with ultrasonic vibration.” Materials Letters, 67(1), 52-55.
[24] Djavanroodi, F., Ahmadian, H., Koohkan, K., and Naseri, R. (2013). “Ultrasonic assisted-ECAP.” Ultrasonics. Volume 53, Issue 6, August 2013, Pages 1089–1096
[25] Blaha, F., & Langenecker, B. (1955). “Elongation of zinc monocrystals under ultrasonic action.” Die Naturwissenschaften, 42(20), 556.
[26] 島川正憲(1993)。超音波工學理論實務(賴耿陽)。台南市:復漢。
[27] 陳昱樺(2013)。超音波振動輔助等通道彎角擠製之初步研究,國立中央大學,桃園縣。
[28] Patil Basavaraj, V., Chakkingal, U., & Prasanna Kumar, T. S. (2009). Study of channel angle influence on material flow and strain inhomogeneity in equal channel angular pressing using 3D finite element simulation. Journal of materials processing technology, 209(1), 89-95.
[29] Balasundar, I., & Raghu, T. (2010). “Effect of friction model in numerical analysis of equal channel angular pressing process.” Materials & Design, 31(1), 449-457.
[30] Chen, C. C., & Kobayashi, S. (1978). “Rigid plastic finite element analysis of ring compression.” Applications of Numerical Methods to Forming Processes,, 163-174.
指導教授 葉維磬(Wei-Ching Yeh) 審核日期 2014-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明