博碩士論文 101323028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.144.92.83
姓名 廖廷瑋(Ting-wei Liao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 深冷鍛造與陽極處理對鋁合金7075的疲勞性質及微結構影響研究
相關論文
★ 7005與AZ61A拉伸、壓縮之機械性質研究★ 雷射去除矽晶圓表面分子機載污染參數的最佳化分析
★ 球墨鑄鐵的超音波檢測★ 模具溫度對TV前框高亮光澤產品研討
★ 高強度7075-T4鋁合金之溫間成形研究★ 鎂合金燃燒、鑽削加工與表面處理之研究
★ 純鈦陽極處理技術之研發★ 鋁鎂合金陽極處理技術之研發
★ 電化學拋光處理、陽極處理中硫酸流速與封孔處理對陽極皮膜品質之影響★ 電解液溫度與鋁金屬板表面粗糙度對陽極處理後外觀的影響
★ 製程參數對A356鋁合金品質的影響及可靠度的評估★ 噴砂與前處理對鋁合金陽極皮膜品質的影響
★ 鎂合金回收重溶之品質與疲勞性質分析★ 鋁合金熱合氧化膜與陽極氧化膜成長行為之研究
★ 潤滑劑與製程參數對Al-0.8Mg-0.5Si鋁合金擠壓鑄件的影響★ 摩擦攪拌製程對AA5052鋁合金之微觀組織及對陽極皮膜的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 高強度鋁合金7075經由退火處理後深冷鍛造與時效處理對其疲勞性質與微結構影響研究;鋁合金7075深冷鍛造後基地內可以獲得等軸狀的細晶粒與較高密度的細緻析出物,經由拉伸測試後發現深冷鍛造材料會犧牲約8~12%的拉伸強度,但會獲得較好的高週疲勞壽命與抗腐蝕能力,並研究深冷鍛造材料在陽極處理後對其疲勞性質的影響。
摘要(英) High strength AA7075 were cryogenic forged after annealing then followed by solution and aging treatment. The cryogenic forged 7075-T73 alloy samples displayed equiaxed fine grains with abundant fine precipitates in their matrix. The tensile properties of cryogenic forged samples were sacrificed about 8-12% but fatigue strength was enhanced in combination of showing superior corrosion resistance. Effect of anodization on the fatigue strength at life cycles of cryogenic forged samples were investigated and compared in this study.
關鍵字(中) ★ 深冷鍛造
★ 旋轉樑疲勞試驗
★ 析出物
★ 陽極處理
關鍵字(英) ★ 7075-T73
★ cryogenic forging
★ precipitates
★ anodized
論文目次 目錄
摘要 I
ABSTRACT II
圖目錄 V
表目錄 IX
第一章 前言 1
第二章 文獻回顧 2
2-1 鋁合金機械性質強化 2
2-1-1 固溶強化 2
2-1-2 加工強化 2
2-1-3 晶粒強化 3
2-1-4 析出強化 4
2-2 鋁合金應力腐蝕破壞 5
2-2-1 陽極溶解(Anodic Dissolution) 8
2-2-2 鈍化膜破裂(Passive Film Rupture) 8
2-2-3 氫致破裂(Hydrogen Induced Cracking, HIC) 9
2-3 鋁合金深冷滾軋機械性質與析出物影響 11
2-3-1 鋁銅合金 12
2-3-2 鋁鎂矽合金 14
2-3-3 鋁鋅鎂合金 17
2-3-4 鋁鋅鎂銅合金 18
2-4 鋁合金深冷鍛造機械性質與析出物影響 23
2-5 疲勞破壞的原理及影響 25
2-4-1 疲勞破壞的過程 26
2-4-2 疲勞裂紋初始機構 27
2-4-3 疲勞裂紋成長機構 28
2-4-4 疲勞最終破壞 28
2-4-5 疲勞應力分析及旋轉樑試驗原理 34
2-6 高週反覆應力對析出物影響 36
2-7 鋁合金陽極處理 37
2-7-1 陽極膜種類與成長機制 39
2-7-2 陽極氧化膜生成的電壓-時間曲線(V-t curve) 41
2-8 陽極處理對析出物影響 44
2-9 鋁合金陽極處理對於疲勞性質的影響 46
2-10 EBSD技術應用分析晶界角度變化 48
2-11 鋁合金7075-T73疲勞試驗後晶界角度變化 49
2-12 鋁合金7075-T73深冷滾軋後疲勞行為與裂紋成長 51
2-13 鋁合金7075-T73的疲勞裂縫起始與成長 51
2-14 動態析出物對疲勞壽命的影響 52
第三章 實驗步驟 54
3-1 實驗材料 54
3-2 實驗儀器 54
3-3 實驗步驟 56
第四章 結果與討論 61
4-1 鋁合金7075經深冷鍛造之微結構特徵 61
4-1-1 微結構與晶粒尺寸 61
4-1-2 二次相顆粒(second phase particles)統計 64
4-1-3 TEM微結構 64
4-1-4 深冷鍛造後晶界角度變化 65
4-1-5 深冷鍛造硬度與拉伸性質 67
4-2 深冷鍛造與原材過時效處理腐蝕電位測試 69
4-3 S-N曲線與疲勞破斷面觀察 70
4-4 陽極處理後對抗腐蝕能力與疲勞強度的影響 74
4-4-1 陽極處理後腐蝕電位影響 74
4-4-2 陽極處理前後基地氫含量變化 76
4-4-3 陽極處理後S-N曲線與破斷面觀察 77
4-4-4 陽極處理與高週疲勞試驗後析出物變化 80
4-4-5 陽極處理與高週疲勞試驗後的晶界角度變化 83
第五章 結論 88
參考文獻 89
參考文獻 參考文獻
[1] I. S. Kim and M. C. Chaturvedi ,“Serrated Flow in A1-5 wt.% Mg Alloy”, Materials Science and Engineering, vol.37, pp.165-172, 1979.
[2] E. A. Brandes and G. B, Smithells Metals Reference Book, 7th edition, Butter worth-Heinemann, Oxford, 1992.
[3] D. Altenpohl, “Aluminium”, vol.37, pp.401-411, 1961.
[4] John E. Hatch, “Aluminum: Properties and Physical Metallurgy”, American Society for Metals, pp.145-148, 1984.
[5] George E. Dieter, “Stacking Faults”, Mechanical Metallurgy, SI Metric Edition, pp.135-137,1988.
[6] D. Hull and D. J. Bacon, Introduction to dislocations,3 rd edition, Pergamon Press, pp.208 , 1984.
[7] Robert E. Reed-Hill, “Dynamic Recovery”, Physical Metallurgy Principles 3th Edition, pp.181-183 ,1994.
[8] J. F. Humphreys, “Recrystallization and Recovery”, Materials Science and Technology, Vol.15, pp.371 ,1991.
[9] Robert E and Reed-Hill, “Recrystallization”, Physical Metallurgy Principles, pp.240-247,1994.
[10] J. P. Lin, T. C. Lei,X. Y. An, “Dynamic Recrystallization during Hot Compression in Al-Mg Alloy”, Scripta Metallurgica, vol. 26 , pp.1869-1874,1992
[11] T. C. Schulthhess, P. E. A. Turchi, A. Gonis, T. G. Nieh, Acta Mater., vol.46 , pp.2215 , 1998.
[12] J. P. Lin, Scripta Metallurgica, vol. 26, pp.1869 , 1992.
[13] H. Loffler, D. Bergner, “Structure and structure development of Al-Zn alloy”, VCH Pub., Inc., N.Y, pp.446-453 ,1995.
[14] Y.H. Zhaoa﹐X.Z. Liao﹐Z. Jin﹐R.Z. Valiev﹐Y.T. Zhu, ” Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing” Acta Materialia﹐vol. 52﹐pp.4589-4599﹐2004.
[15] S.K. Panigrahi﹐R. Jayaganthan, “Development of ultrafine grained high strength age hardenable Al 7075 alloy by cryorolling”, Materials and Design, vol.32, pp.3150-3160, 2011.
[16] F. Viana, A. M. P. Pinto, H. M. C. Santos andA. B. Lopes, “Retrogression and re-ageing of 7075 aluminium alloy: microstructural characterization”, Journal of Materials Processing Technology, vol.92-93, pp.54-59, 1999.
[17] Tang Jian guo﹐C. Hui﹐Z. Xin﹐L. Sheng﹐L. Wen﹐O. Hui﹐L.Hong. , “Influence of quench-induced precipitation on aging behavior of Al-Zn-Mg-Cu alloy”﹐Trans. Nonferrous Met. Soc. China﹐vol.22﹐pp1255-1263﹐2012
[18] D. Wang , D. R. Ni , Z. Y. Ma,“Effect of pre-Strain and two-step aging on microstructure and stress corrosion cracking of 7050 alloy”, Materials Science and Engineering A, vol.494, pp.360-366, 2008
[19] P.N. Adler, R. Delasi, G. Geschwind, ”Influence of Microstructure on the Mechanical Properties and Stress Corrosion Susceptibility of 7050 Aluminum Alloy”, Metallurgical and Materials Transactions B, vol.3, pp.3191-3200, 1972
[20] R. Jayaganthan and S. K. Panigrahi ," Effect of Cryorolling Strain on Precipitation Kinetics of Al 7075 Alloy ", Materials Science Forum, Vol. 584 - 586, pp. 911-916, 2008
[21] X. M. Li and M. J. Starink, “Identification and analysis of intermetallic phases in overaged Zr-containing and Cr-containing Al–Zn–Mg–Cu alloys”, Journal of Alloys and Compounds, vol.509, pp.471-476, 2011
[22] J.J. Thompsom﹐E.S. Tankins﹐V.S.Agarwala﹐”A heat treatment for reducing corrosion and stress corrosion cracking susceptibilities in 7xxx aluminum alloy”﹐Materials Performance, vol.26, pp.45-52, 1987
[23] Denny A. Jones, Principles and Prevention of Corrosion, PrenticeHall, pp. 235-356, 1997.
[24] J.F.Li, Z.W.Peng, C. X. Li, Z. Q. J la, W. J. Chen and Z. Q. Zheng, “Mechanical properties, corrosion behaviors and microstructures of 7075 aluminium alloy with various aging treatments”, Transactions of Nonferrous Metals Society of China, Vol.18, pp.755-762, 2008
[25] Li Jin-Feng,”Mechanical properties, corrosion behaviors and microstructures of 7075 aluminum alloy with various aging treatments”, Transactions of Nonferrous Metals Societyof China, pp.755-762, 2008.
[26] D.K. Xu,” Effect of S-Phase Dissolution on the Corrosion and Stress Corrosion Cracking of an As Rolled Al-Zn-Mg-Cu Alloy”, Corrosion,vol.68, 2012
[27] Wang Zi-Xing,” Tensile and high-cycle fatigue properties of spray formed A110.8Zn2.9Mgl.9Cu alloys after two-stage aging treatment”, Transactions of Nonferrous Metals Society of China , vol.16, 2006
[28] T.D. Burleigh, “The Postulated Mechanisms for Stress Corrosion Cracking of Aluminum Alloys: A Review of the Literature 1980-1989 “, Corrosion, vol.47, pp.89-98, 1991
[29] P. K. Poulose, J.E. Morral, A.J. McEvily, “ Stress Corrosion Crack Velocity and Grain Boundary Precipitates in an Al-Zn-Mg Alloy”, Metall. Trans., vol. 5, pp. 1393-1400.
[30] A. Joshi, C.R. Shastry and M. Levy, ”Effect of Heat Treatment on Solute Concentration at Grain Boundaries in 7075 Aluminum Alloy”, Metall. Trans., vol. 12A, pp.1081-1088, 1981.
[31] S. M. Lee, S. I. Pyun, Y. G. Chun, ” A Critical Evaluation of the Stress-Corrosion Cracking Mechanism in High-Strength Aluminum Alloys”, Metall.Trans., vol. 22A, pp.2407-2413, 1991.
[32] A.H. Le and R. T. Foley, ”On the Nature of the Occluded Cell in the Stress Corrosion Cracking of AA7075-T651 Analysis of the Solution Inside the Crack”, Corrosion-NACE, vol. 40, pp.195-197, 1984.
[33] N.J.H. Holroyd, G.M. Scamans and R. Hermann, ”Conference Proceedings , Corrosion Chemistry Within Pits Crevices and Cracks”, pp. 495-510, 1987.
[34] Y. Choi, H. C. Kim ,S. I. Pyun,” Stress Corrosion Cracking of Al-Zn-Mg Alloy AA-7039 by Slow Strain-Rate Method”, J. Mater. Sci., vol. 19,pp.1517-1521, 1984.
[35] E. Dix,” Trans. Am. Inst. Min. Metall. Eng.”, vol.137, pp. 11-17, 1940.
[36] E. N. Pugh,”Progress Toward Understanding the Stress Corrosion Problem”, Corrosion, vol. 41, pp. 517-526, 1985.
[37] H. Kanematsu, M. Okido and T. Oki, ” Potentiostatic Slow Strain Rate Tests and Analysis of Fracture Surface On Three Kinds of Al-Zn-Mg Alloys”, J. Jpn Inst. Light Met., vol. 36, pp. 333-338, 1986.
[38] T. Oki, M. Okido and H. Kanematsu,” Fracture Mode of Al-Zn-Mg Alloys in Various Environments”, J. Jpn Inst. Light Met., vol. 36, pp. 308-314, 1986.
[39] C.A. Loto and R. A. Cottis,” Electrochemical Noise Generation During Stress Corrosion Cracking of the High Strength Aluminum AA7075-T6 Alloy”, Corrosion, vol. 45, pp. 136-141, 1989.
[40] 劉永輝、張佩芬,金屬腐蝕學原理,航空工業出版社, pp. 124-150, 1993.
[41] T. Oka, Shizen Kagaku, vol. 32, No. 2, pp.17-29, 1988.
[42] C.A. Loto and R. A. Cottis, ” Electrochemical Noise Generation During Stress Corrosion Cracking of the High Strength Aluminum AA7075-T6 Alloy, Corrosion, vol. 45, pp. 136-141, 1989.
[43] D. Nguyen, A. W. Thompson and I. M. Bernstein,” Microstructural Effects on Hydrogen Embrittlement in High Purity 7075 Aluminum Alloy”, Acta Metall., vol. 35, pp. 2417-2425, 1987.
[44] Mars G. Fontana, Corrosion Engineering ,3rd ed., McGRAW-HILL,pp.109-152, 1987.
[45] M. O. Speidel, ”Current Understanding of Stress Corrosion Crack Growth in Aluminum Alloys”, The Theory of Stress Corrosion Cracking in Alloys, NATO, Brusels, pp. 333-340, 1971.
[46] W. Gruhl,” The Stress Corrosion Behavior of High Strength Al Zn Mg Alloys”, Aluminium, vol. 54, pp. 323-325, 1978.
[47] G.M. Scamans, ”Evidence for Crack Arrest Markings on Intergranular Stress Corrosion Fracture Surfaces in Al-Zn-Mg Alloys”, Met. Trans. A 11A, vol.5, pp. 846-850, 1980.
[48] P. Martin, J. I. Dickson and J. P. Bailon, ”Stress Corrosion Cracking in Aluminum Alloy 7075-T651 by Discrete Crack Jumps as Indicated by Fractography and Acoustic Emission”, Mater. Sci. & Eng., vol. 69, pp.9-13, 1985.
[49] M. Baumgartner and H. Kaesche, ”Intercrystalline Corrosion and Stress Corrosion Cracking of AlZnMg Alloys”, Corrosion, vol. 44, pp. 231-239, 1988.
[50] D. Hardie, N. J. H. Holroyd and R. N. Parkins, ”Effect of Hydrogen on Ductility of a High-Strength Al-Zn-Mg-Cu Alloys” , Metal Science, vol. 13, pp. 603-610, 1979.
[51] J. Albrecht, I. M. Bernstein and A. W. Thompson, ”Evidence for Dislocation Transport of Hydrogen in Aluminum”, Metall. Trans. , vol. 13, pp. 811-820, 1982.
[52] D.A. Hardwick, A. W. Thompson, I. M. Bernstein,” The Effect of Copper Content and Microsturcture on the Hydrogen Embrittlement of Al-6Zn-2Mg Alloys”, Metall. Trans., vol.14, pp. 2517-2526, 1983.
[53] G.M. Scamans, R. Alani and P. R. Swann, ”Pre-exposure Embrittlement and Stress Corrosion Failure in Al-Zn-Mg Alloys”, Corr. Sci., vol. 16, pp.443-459, 1976.
[54] M. Talianker and B. Cina, ” Retrogression and Reaging and the Role of Dislocations in the Stress Corrosion of 7000-Type Aluminum Alloys”, Metall. Trans. A, vol.20, pp. 2087-2092, 1989.
[55] G.M. Scamans, ” Hyddrogen Bubbles in Embrittled Al-Zn-Mg Alloys, J. Mater. Sci., vol. 13, pp.27-36, 1978.
[56] J. Albrecht, A. W. Thompson and I. M. Bernstein, ”The Role of Microstructure in Hydrogen-Assisted Fracture of 7075 Aluminum”, Metall. Trans., vol.10, pp. 1759-1766, 1979.
[57] Y. Jin, C. Li, J. Ru and M. Yan,”On the Stress Corrosion Behavior of 7050 Al Alloys, Materials Letters, vol. 12, pp. 376-380, 1991.
[58] H-P. Kim, R-H. Song and S-I. Pyun, ” Effects of Hydrogen Recombination Poisons on Stress Corrosion Crack Initiation and Propagation in Al-Zn-Mg Alloys”, Br. Corros. J., vol. 23, No. 4, pp. 254-258, 1988.
[59] S.P. Lynch, ”Environmentally assisted cracking-Overview of evidence for an adsorption-induced localized-slip process”, Acta Metall., vol. 36, pp. 2639-2661,1988.
[60] S.P. Lynch,” Mechanisms of Intergranular Fracture”, Materials Science Forum, vol. 46, pp.1-24, 1989
[61] W. Gruhl, ” Stress Corrosion Cracking of High Strength Aluminum Alloys”, Z.Metallkd., vol. 75, pp. 819-826, 1984.
[62] L. Christodoulou and H. M. Flower,”Hydrogen Embrittlement and Trapping in Al-6%Zn-3%Mg”, Acta Metall., vol. 28, pp. 481-487, 1980.
[63] J. R. Pickens and T. J. Langan, ”The Effect of Solution Heat-Treatment on Grain Boundary Segregation and Stress-Corrosion Cracking of Al-Zn-Mg Alloys”, Metall. Trans., vol.18, pp.1735-1744 , 1987.
[64] R. J. Gest, A. R. Troiano, ” Stress Corrosion and Hydrogen Embrittle in an Aluminum Alloy”, Corrosion NACE, vol. 30 pp. 274-279, 1974.
[65] Y. J. Chen, H. J. Roven, S. S. Girseeh, P. C. Skaret, J. Hjelen, "Quantitative study of grain refinement in Al-Mg alloy processed by equal channel angular pressing at cryogenic temperature", Material Letters, Vol. 65, pp.3472-3475, 2011
[66] Dharmendra Singh, P. N. Rao, R. Jayaganthan, "Effect of deformation temperature on mechanical properties of ultra fine grained Al-Mg alloy processed by rolling", Materials and Design, Vol.50, pp.646-655, 2013
[67] K. Gopala Krishna, K. Sivaprasad, T.S.N. Sankara Narayanan, K. Venkateswarlu, K.C. Kumar, "Microstructure evolution and ageing behavior of cryorolled Al-4Zn-2Mg alloy", Material Science and Engineering A, Vol.535, pp.129-135, 2012
[68] T. Shanmugasundaram, B. S. Murty, V. S. Sarma, "Development of ultra fine grained high strength Al-Cu alloy by cryorolling", Scripta Materialia, Vol.54, pp.2013-2017, 2006.
[69] S. Cheng , Y.H. Zhao, Y.T. Zhu, E. Ma, "Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation ", Acta Materialia, Vol.55, pp.5822-5832, 2007 .
[70] Sushanta Kumar Panigrahi, R. Jayaganthan, V. Chawla, "Effect of cryorolling on microstructure of Al-Mg-Si alloy ", Materials Letters, Vol.62, pp.2626-2639, 2008
[71] Sushanta Kumar Panigrahi, R. Jayaganthan, "A study on the mechanical properties of cryorolled Al-Mg-Si alloy ", Materials Science and Engineering A, Vol.480, pp.299-305, 2008
[72] Sushanta Kumar Panigrahi, R. Jayaganthan, "Development of ultrafine-grained Al 6063 alloy by cryorolling with the optimized initial heat treatment conditions ", Materials and Design, Vol.32, pp.2172-2180, 2011
[73] P. Nageswara rao, R. Jayaganthan, "Effects of warm rolling and ageing after cryogenic rolling on mechanical properties and microstructure of Al 6061 alloy ", Materials and Design, Vol.39, pp.226-233, 2012
[74] K. Gopala Krishna, K. Sivaprasad, T.S.N. Sankara Narayanan, K.C. Kumar, "Localized corrosion of an ultrafine grained Al-4Zn-2Mg alloy produced by cryorolling", Corrosion Science, Vol.60, pp.82-89, 2012
[75] Yong-Hao Zhao, X.Z. Liao, S. Cheng, En Ma, and Yuntian T. Zhu, "Simultaneously Increasing the Ductility and Strength of Nanostructured Alloys", Advance materials, 2006
[76] R. Jayaganthan, S. K. Panigrahi, " Effect of Cryorolling Strain on Precipitation Kinetics of Al 7075 Alloy ", Materials Science Forum, Vol. 584 - 586, pp. 911-916, 2008
[77] Sushanta Kumar Panigrahi, R. Jayaganthan , "Development of ultrafine grained high strength age hardenable Al 7075 alloy by cryorolling", Materials and Design , Vol. 32, pp. 3150-3160, 2011
[78] Prosenjit Das , R. Jayaganthan , T. Chowdhury , I.V. Singh ,"Fatigue behaviour and crack growth rate of cryorolled Al 7075 alloy", Materials Science and Engineering A , Vol. 528, pp. 7124-7132, 2011
[79] Sushanta Kumar Panigrahi ,R. Jayaganthan, "Effect of ageing on microstructure and mechanical properties of bulk, cryorolled,and room temperature rolled Al 7075 alloy", Journal of Alloys and Compounds , Vol. 509, pp. 9609-9616, 2011
[80] P. Das, R. Jayaganthan, I.V. Singh, "Tensile and impact-toughness behaviour of cryorolled Al 7075 alloy", Materials and Design , Vol. 32, pp. 1298-1305, 2011
[81] J.B. Singh, R. Kapoor, A. Durga Prasad, J.K. Chakravartty, "Comparison of microstructures and strengths of an Al-2.5Mg alloy subjected to severe plastic deformation at room and liquid nitrogen temperatures", Materials Science & Engineering A , Vol. 581, pp. 26-30, 2013
[82] Weilin Yan , Xiaohong Liu , Jinyuan Huang, Lin Chen, "Strength and ductility in ultrafine-grained wrought aluminum alloys ", Materials and Design, Vol. 49, pp.520-524, 2013
[83] P. Nageswara Rao, Dharmendra Singh, R. Jayaganthan, "Mechanical properties and microstructural evolution of Al 6061 alloy processed by multidirectional forging at liquid nitrogen temperature ", Materials and Design , Vol.56, pp.97-104, 2014
[84] Jingou , Jian Lu, Hongtao Ma, P. Zhang, "Nano structural formation of fine grained aluminum alloy by severe plastic deformation at cryogenic temperature ", Journal of Materilals Science, Vol.39, pp.2851-2854, 2004
[85] Fatigue and Fracture, ASM Handbook, vol.19, 1996
[86] 陳永增,鄧惠源, 機械材料試驗 , 高立出版社, 台北, 民國86 年
[87] C.R. Krenn, J.W. Morris Jr., “The compatibility of crack closure and Kmax dependent models of fatigue crack growth”, International Journal of Fatigue, vol.21, pp. 147-155, 1999
[88] A.K.Vasudévan,P.E.Bretz,” Near-threshold fatigue crack growth behaviour of 7xxx and 2xxx alloys: A brief review”, Proceedings of theInternational symposium on fatigue crack growth threshold concepts, Philadelphia, 1983
[89] Robert E. Reed-Hill, “The Microscopic Aspects of Fatigue Failure”, Physical Metallurgy Principles 3th Edition, pp.755-760, 1994
[90] Robert E. Reed-Hill, “The Plastic Zone Size Ahead of A Crack”, Physical Metallurgy Principles 3th Edition, pp.792-795, 1994
[91] M. Klesnil, P. Lukas, “Kinetics of Crack Growth”, Fatigue of Metallic Materials, Second Revised Edition, pp.92~97, 1992
[92] C. Laird, The influences of Metallurgical structure on the mechanisms of fatigue crack propagation, Fatigue crack propagation, ASTM, Philadelphia, 1967
[93] H.W. Hayden, W.G. Moffatt and J. Wulff, The structure and properties of Materials, Volume III, John Wiley, United Kingdom, 1965
[94] Robert E. Reed-Hill, “The Rotating-Beam Fatigue Test”, Physical Metallurgy Principles 3th Edition, pp.750-752, 1994
[95] G. Patton, C. Rinaldi , Y. Bre´chet , G. Lormand , R. Fouge`res, " Study of fatigue damage in 7010 aluminum alloy", Materials Science and Engineering A , vol.254 , pp. 207-218, 1998
[96] Chang R, Morris WL, Buck O., “Fatigue crack nucleation at intermetallic particles in alloys a dislocation pile-up model”, Scripta Metall ,vol. 13, pp.191,1979.
[97] Joel Payne, Greg Welsh, Robert J. Christ Jr, Jerrell Nardiello, John M. Papazian, "Observations of fatigue crack initiation in 7075-T651", International Journal of Fatigue , Vol.32, pp. 247-255, 2010
[98] Y. Xue , H. El Kadiri, M.F. Horstemeyer, J.B. Jordon, H. Weiland ,"Micromechanisms of multistage fatigue crack growth in a high-strength aluminum alloy", Acta Materialia , Vol.55, pp.1975-1984, 2007
[99] Mohammed Noor Desmukh, R.K. Pandey, A.K. Mukhopadhyay," Effect of aging treatments on the kinetics of fatigue crack growth in 7010 aluminum alloy", Materials Science and Engineering A , Vol. 435-436, pp. 318-326, 2006
[100] H. Masuda and F. Hasegwa, “Self-Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution”, Journal of The Electrochemical Society, Vol.144 , pp.127-130, 1997
[101] G. E. Thompson, “Porous anodic alumina: fabrication, characterization and applications”, Thin Solid Films, Vol.297, pp.192-201, 1997
[102] O. Jessensky, F. Mu¨ ller and U. Go¨sele, “Self-organized formation of hexagonal pore arrays in anodic alumina”, Applied Physics Letters, Vol.72, pp.1173-1175, 1998
[103] J. P. O’Sullivan and G. C. Wood, “The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminium”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol.317, pp.511-543, 1970
[104] Z. Wu, C. Richter and L. Menona, “A study of anodization process during pore formation in nanoporous alumina templates”,Journal of The Electrochemical Society, Vol.154, pp.8-12, 2007
[105] G. E. Thompson and G. C. Wood, “Porous anodic film formation on aluminium”, Nature, Vol.290, pp.230-232, 1981
[106] G. Patermarakis, P. Lenas, CH. Karavassilis and G. Papayiannis, “Kinetics of growth of porous anodic Al2O3 films on A1 metal”, Electorchimica Acta, Vol.36, pp.709-725, 1991
[107] G. C. Wood and J. P. O’Sullivan, “The anodizing of aluminium in sulphate solutions”, Electorchimica Acta, Vol.15, pp.1865-1876, 1970
[108] P. S. Wei and T. S. Shih, “Monitoring the Progressive Development of an Anodized Film on Aluminum”, Journal of The Electrochemical Society, Vol.154, pp.678-683, 2007
[109] T. S. Shih, P. S. Wei and Y. S. Huang, “Optical Properties of Anodic Aluminum Oxide Films on Al1050 Alloys”, Surface and Coating Technology, Vol.202 , pp.3298-3305, 2008
[110] T. P. Hoar and J. Yahalom, “The Initiation of Pores in Anodic Oxide Films Formed on Aluminum in Acid Solutions”, Journal of The Electrochemical Society , Vol.110, pp.614-621, 1963
[111] Chahinez Fares , Achraf Boudiaf , Mohamed El Amine Belouchrani , Taoufik Boukharouba , " Microstructural characterisation of oxide layer developed by sulphuric anodisation on 2017A alloys", International Journal of Materials Research, Vol.104, pp. 1108-1113., 2013
[112] I. Tsangaraki-Kaplanoglou, S. Theohari, Th. Dimogerontakis, Yar-Ming Wang, Hong-Hsiang Kuo, Sheila Kia , " Effect of alloy types on the anodizing process of aluminum", Surface & Coatings Technology, Vol.200, pp. 2634-2641, 2006
[113] Guminski, R.D.& Sheasby, P.G.& Lamb, H.J., "Reaction rates of second-phase constituents in aluminium during etching, brightening and oxalic acid anodizing processes", Trans. Inst. Met. Finish., vol. 46, p.44-48, 1968
[114] J. Cote, E. E. Howlett, and H. J. Lamb, “The Behavior of Intermetallic Compunds in Aluminum”. During Sulfuric Acid Anodizing, vol. 57, 484 ,1970
[115] L. E. Fratila-Apachitei, F.D. Tichelaar, G.E. Thompson, H. Terryn, P. Skeldon, J. Duszczyk, L. Katgerman,”A transmission electron microscopy study of hard anodic oxide layers on AlSi(Cu) alloys”, Electrochim. Acta, vol.49 , pp.3169, 2004.
[116] E. Cirik, K. Genel ,"Effect of anodic oxidation on fatigue performance of 7075-T6 alloy", Surface & Coatings Technology, Vol.202, pp. 5190-5201, 2008
[117] A. Camargo, H. Voorwald, " Influence of anodization on the fatigue strength of 7050-T7451 aluminum alloy", Fatigue and Fracture of Engineering Materials and Structures, Vol.30, pp.993-1007, 2007
[118] M. Shahzad, M. Chaussumier, R. Chieragatti, C. Mabru, F. Rezai Aria, " Influence of surface treatments on fatigue life of Al 7010 alloy", Journal of Materials Processing Technology, Vol.210, pp.1821-1826, 2010
[119] Majid Shahzad, Michel Chaussumie , Rémy Chieragatti, Catherine Mabru, Farhad Rezai-Aria , " Surface characterization and influence of anodizing process on fatigue life of Al 7050 alloy", Materials and Design, Vol.32, pp. 3328-3335, 2011
[120] P.S. De,R.S. Mishra,“Microstructural evolution during fatigue of ultrafine grained aluminum alloy”, Materials Science and Engineering A, vol.527, pp.7719-7730 ,2010.
[121] T. C. Schulthhess, P. E. A. Turchi, A. Gonis, T. G. Nieh, Acta Mater., 46 p.2215,1998
[122] J. P. Lin, Scripta Metallurgica, vol.26 ,pp.1869 , 1992
[123] H. Loffler, D. Bergner, “Structure and structure development of Al-Zn alloy”, VCH Pub., Inc., N.Y, p.446, p.453 , 1995.
[124] 李庭豪﹐「鋁合金7075-T73原材與陽極處理封孔後的疲勞性質影響對微結構的研究」﹐國立中央大學﹐碩士論文﹐民國102年
[125] L. Iglesias-Rubianes, P. Skeldon, G.E. Thompson, U. Kreissig, D. Grambole,H. Habazaki, K. Shimizu, ” Behaviour of hydrogen impurity in aluminium alloys during anodizing”, Thin Solid Films, vol.424, pp.201-207, 2003
[126] I. M. Robertson , H. K. Birnbaum, “Dislocation mobility and hydrogen – A BRIEF REVIEW”
[127] P. J. Ferreira, I. M. Robertson, H. K. Birnbaum, “Hydrogen effects on the character of dislocations in high purity Aluminum”, Acta Metallurgica, vol.47, pp.2991~2998, 1999
[128] F.J. Humphreys, M. Hatherly, ”Recrystallization and Related Phenomena”, pp.131, 1995
[129] Prosenjit Das , R. Jayaganthan , T. Chowdhury , I.V. Singh ,"Fatigue behaviour and crack growth rate of cryorolled Al 7075 alloy", Materials Science and Engineering A , Vol. 528, pp. 7124-7132, 2011
[130] G. Patton, C. Rinaldi , Y. Bre´chet , G. Lormand , R. Fouge`res, " Study of fatigue damage in 7010 aluminum alloy", Materials Science and Engineering A ,vol.254 , pp. 207-218, 1998
[131] W.Z. Han,Y. Chen,A. Vinogradov, C.R. Hutchinson, “Dynamic precipitation during cyclic deformation of an underaged Al–Cu alloy”, Materials Science and Engineering A, vol.528, pp.7410-7416, 2011
[132] Mohammed noor desmukh,R.K. Pandey,A.K. Mukhopadhyay,“Effect of aging treatments on the kinetics of fatigue crack growth in 7010 aluminum alloy”, Materials Science and Engineering A, vol.435-436, pp.318-326, 2006
[133] Teng-shih shih,” Electrochemical behavior of anodized AA7075-T73 alloys as affected by the matrix structure” Applied Surface Science, 2011
[134] Gurbuz R, Alpay S.P., “Effect of coarse second phase particle on fatigue crack propagation of an Al-Zn-Mg-Cu alloy”, Scripta Metallurgica et Matenrialia, vol.30, pp.1373-1376, 1944
[135] 周俊宏﹐「輥軋變形對7075-T73鋁合金的微結構與陽極行為和皮膜性質的影響」﹐國立中央大學﹐碩士論文﹐民國101年
[136] D. Williamand and Jr. Callister : Materials Science and Engineering , 3rd ed. ,New York , John Wiley & Sons , Inc , pp.92-162, 1994 .
[137] G. Yahr, J. Pressure Vessel Technol. ,Vol.119,pp. 211-215, 1997
[138] Jin-fang Peng, Min-hao Zhu,” Study on bending fretting fatigue damages of 7075 aluminum alloy”, Tribology International, vol.59, pp.38-46 , 2013
[139] P.S. De,R.S. Mishra,“Microstructural evolution during fatigue of ultrafine grained aluminum alloy”, Materials Science and Engineering A , vol.527, pp.7719-7730 , 2010.
[140] S.K. Panigrahi, R. Jayaganthan, V. Pancholi,”Effect of plastic deformation conditions on microstructural characteristics and mechanical properties of Al 6063 alloy”, Mater Des., vol.30, pp.1894-1901, 2009.
[141] A. Oudriss, J. Creus, J. ,” Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel”, Acta Materialia ,vol.60, pp.6814-6828, 2012.
[142] C.R. Hutchinson, F. de Geuser,” Quantitative measurements of dynamic precipitation during fatigue of an Al–Zn–Mg–(Cu) alloy using small-angle X-ray scattering, Acta Materialia , vol74, pp.96-109, 2014.
[143] S. E. Benjamin, Fazal A. Khalid,” Stress Generated on Aluminum During Anodization as a Function of Current Density and pH”, Oxidation of Metals, Vol. 52, Nos. 1999.
[144] J. A. M. Camargo, Herman Jacobus Cornelis,” Coating residual stress effects on fatigue performance of 7050-T7451 aluminum alloy”, Surface & Coatings Technology , vol.201, pp. 9448 -9455, 2007.
[145] Su-ll Pyun,” Effects of film formation parameters on stress generation during anodic oxidation of metals in corrosive media” , Materials Letters ,vol.27, pp. 297-305, 1996
[146] Joong Do Kim,S.L Pyun, R. A. Oriani , ” Effects of applied current density and potential step on the stress generation during anodic oxidation of tungsten in 0.1 M H2SO4Solution ” , Electrochimica acta , vol. 40, pp.1171-1176, 1995
[147] Sung-Mo Moon and Su-Il Pyun,” The mechanism of stress generation during the growth of anodic oxide films on pure aluminium in acidic solutions”, Electrochimica Acta, Vol. 43, pp. 3117-3126, 1998
指導教授 施登士(Teng-shih Shih) 審核日期 2014-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明