博碩士論文 100326015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.138.123.137
姓名 鄭翔勻(Hsiang-Yun Cheng)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 Chlorella sp.攝取工業廢水營養鹽並固定二氧化碳之研究
(Carbon Dioxide Fixation by Chlorella sp. Uptaking Nutrient from Industrial Wastewater)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究★ 下水污泥灰渣特性及應用於水泥 砂漿之研究
★ 以Microtox檢測方法評估實際廢水生物毒性之研究★ 化學置換程序回收氯化銅蝕刻廢液之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用Chlorella sp.攝取光電(OE)和半導體(SC)放流水中的氮磷,並固定外添加的CO2。試驗設計主要分成適應性試驗與固碳去氮除磷試驗兩大部分。
批次操作下,初步瞭解Chlorella sp.確實能生存於光電(OE)和半導體(SC)放流水中,並攝取氮磷合成藻體。研究結果顯示,Chlorella sp.生長於低N/P的光電(OE)放流水中,生物質產率(Pal)受初始氮磷濃度影響甚大,藻體攝取氨氮的能力會因磷濃度(>12.25 (mg P) L-1) 過高而受抑制;Chlorella sp.生長於高N/P的半導體(SC)放流水,生物質產率(Pal)則受初始藻體濃度(Xal0)影響較大,當初始藻體濃度(Xal0)為0.10、0.50和1.0 (g DW) L-1時,生物質產率(Pal)隨其增加而提升,介於0.100-0.634 (g DW) L-1d-1之間。
半連續操作下,各參數的最佳條件為SRT=21 d、HRT=4 d以及6% CO2 (v/v),Chlorella sp.對低N/P的光電(OE)放流水(水質為37.06 (mg NH4+-N) L-1和27.85 (mg PO43--P) L-1)之最佳氮磷去除率分別為78.9-79.2%和5.7-7.8%。當SRT=30 d時,槽中藻體濃度(Xal=4.6 (g DW) L-1)過高,藻體因自我光遮蔽效應而活性漸失,最終氮磷去除率分別為22.9%和3.7%。當HRT=4 d時,水質pH值趨於酸性(<4),氨氮去除率自96.4%降至73.4%,且生物質產率最低(Pal=0.114 (g DW) L-1d-1)。反觀HRT=2d時,水質pH=6左右,平均氨氮去除率只有54.9%,但其生物質產率(Pal=0.171 (g DW) L-1d-1)最高。將CO2濃度自6% CO2 (v/v)提高至12及18% CO2 (v/v),生物質產率(Pal)自0.157驟降至0.049 (g DW) L-1d-1,固碳速率(RCO2)也自0.220降至0.098 (g CO2) L-1d-1。
本研究發現,Chlorella sp.能攝取光電(OE)和半導體(SC)放流水中的氮磷,其攝取能力受環境之各種負荷影響。於半連續操作中,受SRT之影響最為顯著,表示Chlorella sp.對光能的利用率是最重要的因子,pH值的影響則次之。
摘要(英) This study is aimed to removal of nutrients from opto-electronics (OE) and semi-conductor (SC) effluent, and fixed CO2 simultaneously by Chlorella sp.. The experimental design included: (1) adaptation test in batch mode and; (2) laboratory scale treatment system in semi-continuous mode.
In adaptation test find out Chlorella sp. could uptake nitrogen and phosphate from OC and SC effluent, and synthesize biomass in the meanwhile. Results showed out Chlorella sp. in OE effluent (low N/P) was affected by initial nitrogen and phosphate concentrations, Chlorella sp. uptake ability of ammonium was poor when phosphate concentration was high (>12.25 (mg P) L-1) ; in SC effluent (high N/P) was affected by initial biomass concentrations (Xal0 = 0.1, 0.5, and 1.0 (g DW) L-1), biomass producti-
vity (Pal = 0.100-0.634 (g DW) L-1d-1) would be higher when Xal0 was increased.
The results showed out the optimum parameter was SRT=21 d、HRT=4 d and 6% CO2 (v/v), and the greatest nitrogen and phosphate of removal rate was 78.9-79.2% and 5.7-7.8%, respectively, by Chlorella sp. in OE effluent (37.06 (mg NH4+-N) L-1 and 27.85 (mg PO43--P) L-1) under semi-continuous operation. When STR=30 d, Xal=
4.6 (g DW) L-1 was caused self-shadowing effect and Chlorella sp. activity become lower and nitrogen and phosphate uptake rate was decreasing to 22.9% and 3.7%, respectively. When HRT=4 d, pH would be under 4, and ammonium-nitrogen removal rate was decreasing from 96.4 to 73.4%, and the biomass productivity was lowest (Pal = 0.114 (g DW) L-1d-1). In contrast, HRT=2 d and pH about 6, and ammonium-nitro-
gen removal rate (54.9%) was lowest, but the biomass productivity was highest (Pal = 0.171 (g DW) L-1d-1). CO2 concentration was increasing from 6 to 12 and 18% CO2 (v/v), and biomass productivity was rapidly decreasing from 0.157 to 0.049 (g DW) L-1d-1, and CO2 fixed rate (RCO2) was decreasing from 0.220 to 0.098 (g CO2) L-1d-1.
Chlorella sp. could uptake nitrogen and phosphate from OE and SC effluent, and the uptake ability was affected to various effect factors. Under semi-continuous operation, SRT is the most significant factor, and followed by pH.
關鍵字(中) ★ Chlorella sp.
★ 光電
★ 半導體
★ 氮磷去除
★ 固定CO2
★ 半連續反應器
關鍵字(英) ★ Chlorella sp.
★ opto-electronics
★ semi-conductor
★ nitrogen
★ phosphate
★ fixed CO2
★ semi-continuous reactor
論文目次 第一章前言 1
1-1 研究緣起 1
1-2 研究目的 2
第二章文獻回顧 3
2-1 溫室氣體CO2 之影響與減碳策略3
2-1-1 CO2 對環境之影響 3
2-1-2 減碳策略 6
2-2 含氮磷廢水之影響及處理方法 7
2-2-1 含氮磷廢水對環境之影響 7
2-2-2 產業製程及廢水特性 7
2-2-3 含氮磷廢水處理方法 11
2-3 微藻固碳去除氮磷之原理 13
2-3-1 微藻之生化反應式13
2-3-2 生長因子 14
2-3-3 小球藻(Chlorella sp ) 17
2-3-4 固碳去氮除磷機制19
2-4 微藻固碳去氮除磷之研究現況 24
2-4-1 微藻與傳統生物去氮除磷程序 24
2-4-2 微藻固碳去氮除磷之研究現況 27
2-4-3 微藻固碳去氮除磷之研究所面臨的問題 55
第三章試驗方法及設備 56
3-1 研究流程 56
3-2 研究材料與藥品 57
3-2-1 研究材料來源及保存方法 57
3-2-2 試驗藥品 63
3-3 研究設備與儀器 65
3-3-1 試驗設備 65
3-3-2 分析方法及分析儀器 66
3-4 研究方法 67
3-4-1 適應性試驗設計 67
3-4-2 固碳去氮除磷試驗設計 69
第四章結果與討論 75
4-1 水質特性對Chlorella sp 合成藻體之潛在影響 75
4-2 適應性試驗 77
4-2-1 不同初始藻體濃度(Xal
0)於各放流水之生長情況 77
4-2-2 批次模式動力分析 80
4-2-3 初始氮磷濃度對Chlorella sp 生長的影響 84
4-2-4 基質利用率與合成藻體之質量平衡87
4-2-5 不同初始藻體濃度(Xal
0)於各放流水之氮磷及TOC 去除率 89
4-2-6 不同初始藻體濃度(Xal
0)於各放流水之pH 值變化 90
4-3 固碳去氮除磷試驗 93
4-3-1 不同初始藻體濃度(Xal
0)對氮磷處理成效之影響 93
4-3-2 不同SRT 對氮磷處理成效之影響 95
4-3-3 不同HRT 對氮磷處理成效之影響 100
4-3-4 不同CO2 濃度對處理成效之影響 105
4-3-5 最佳去氮除磷條件及處理成效與操作時間對處理成效之影響 111
第五章結論與建議 112
5-1 結論 113
5-2 建議與未來展望 113
參考文獻 115
附錄一系統中相關反應式之彙整128
附錄二批次模式動力學 130
附錄三半連續模式推導 133
附錄四適應性試驗水質分析結果136
附錄五半連續操作-HRT 初步試驗 138
附錄六半連續操作試驗結果 144
參考文獻 1.Åkerström, A. M., L. M. Mortensen, B. Rusten, and H. R. Gislerød, “Biomass production and nutrient removal by Chlorella sp. as affected by sludge liquor concentration”, Journal of Environmental Management, 144, pp. 118-124, (2014).
2.Aslan, S., and I. K. Kapdan, “Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae”, Ecological Engineering, 28, pp. 64-70, (2006).
3.Aziz, M. A., and W. J. Ng, “Feasibility of wastewater treatment using the activated-algae process”, (1992).
4.Baba, M., and Y. Shiraiwa, “High-CO2 Response Mechanisms in Microalgae” (2012).
5.Badger, M. R., and G. D. Price, “Carbonic Anhydrase Activity Associated with the Cyanobacterium Synechococcus PCC7942”, Plant Physiology, 89, pp. 51-60, (1989).
6.Becker, E. W., “Microalgae : biotechnology and microbiology”, Cambridge studies in biotechnology Cambridge, New York, Cambridge University Press, (1994).
7.Benemann, J. R., “CO2 mitigation with microalgae systems”, Energy Conversion and Management, 38, pp. S475-S479, (1997).
8.Boelee, N. C., H. Temmink, M. Janssen, C. J. N. Buisman, and R. H. Wijffels, “Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms”, Water Research, 45, pp. 5925-5933, (2011).
9.Boonchai, R., G. T. Seo, D. R. Park, and C. Y. Seong, “Microalgae Photobioreactor for Nitrogen and PhosphorusRemoval from Wastewater of Sewage Treatment Plant”, International journal of Bioscience, Biochemistry and Bioinformatics, 2, pp. 407-410, (2012).
10.Carvalho, A. P., and F. X. Malcata, “Transfer of carbon dioxide within cultures of microalgae: plain bubbling versus hollow-fiber modules”, Biotechnol Prog, 17, pp. 265-72, (2001).
11.Castellanos, C. S., “Batch and continuous studies of Chlorella vulgaris in photo-bioreactor”, (2013).
12.Chisti, Y., “Biodiesel from microalgae”, Biotechnol Adv, 25, pp. 294-306, (2007).
13.Chiu, S. Y., C. Y. Kao, T. T. Huang, C. J. Lin, S. C. Ong, C. D. Chen, J. S. Chang, and C. S. Lin, “Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures”, Bioresource Technology, 102, pp. 9135-9142, (2011).
14.Chiu, S. Y., M. T. Tsai, C. Y. Kao, S. C. Ong, and C. S. Lin, “The air-lift photobioreactors with flow patterning for high-density cultures of microalgae and carbon dioxide removal”, Engineering in Life Sciences, 9, pp. 254-260, (2009).
15.Chiu, S. Y., C. Y. Kao, C. H. Chen, T. C. Kuan, S. C. Ong, and C. S. Lin, “Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor”, Bioresour Technol, 99, pp. 3389-96, (2008).
16.Cho, S., T. T. Luong, D. Lee, Y. K. Oh, and T. Lee, “Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production”, Bioresource Technology, 102, pp. 8639-8645, (2011).
17.Choi, H. J., and S. M. Lee, “Effects of Microalgae on the Removal of Nutrients from Wastewater: Various Concentrations of Chlorella vulgaris”, Environmental Engineering Research, (2012).
18.Choi, H. J., and S. M. Lee, “Performance of Chlorella vulgaris for the Removal of Ammonia-Nitrogen from Wastewater”, Environmental Engineering Research, 18, pp. 235-239, (2013).
19.Coleman, J. R., “The molecular and biochemical analyses of CO2-concentrating mechanisms in cyanobacteria and microalgae”, 14, Plant Cell Environ, (1991).
20.Concas, A., G. A. Lutzu, M. Pisu, and G. Cao, “Experimental analysis and novel modeling of semi-batch photobioreactors operated with Chlorella vulgaris and fed with 100% (v/v) CO2”, Chemical Engineering Journal, 213, pp. 203-213, (2012).
21.Dalrymple, O. K., T. Halfhide, I. Udom, B. Gilles, J. Wolan, Q. Zhang, and S. Ergas, “Wastewater use in algae production for generation of renewable resources: a review and preliminary results”, Aquat Biosyst, 9, p. 2, (2013).
22.de Morais, M. G., and J. A. Costa, “Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors”, Biotechnol Lett, 29, pp. 1349-52, (2007a).
23.de Morais, M. G., and J. A. V. Costa, “Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide”, Energy Conversion and Management, 48, pp. 2169-2173, (2007b).
24.Di Termini, I., A. Prassone, C. Cattaneo, and M. Rovatti, “On the nitrogen and phosphorus removal in algal photobioreactors”, Ecological Engineering, 37, pp. 976-980, (2011).
25.Diao, Y. F., X. Y. Zheng, B. S. He, C. H. Chen, and X. C. Xu, “Experimental study on capturing CO2 greenhouse gas by ammonia scrubbing”, Energy Conversion and Management, 45, pp. 2283-2296, (2004).
26.Doucha, J., F. Straka, and K. Lívanský, “Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor”, Journal of Applied Phycology, 17, pp. 403-412, (2005).
27.Ebeling, J. M., M. B. Timmons, and J. J. Bisogni, “Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems”, Aquaculture, 257, pp. 346-358, (2006).
28.Ellis, J. T., N. N. Hengge, R. C. Sims, and C. D. Miller, “Acetone, butanol, and ethanol production from wastewater algae”, Bioresource Technology, 111, pp. 491-495, (2012).
29.Fredy, D., “Nitrification and denitrification by algal-bacterial biomass in a Sequential Batch Photo-bioreactor: effect of SRT”, International Master of Science in Environmental Technology and Engineering, (2013).
30.Gonzalez Lopez, C. V., F. G. Acien Fernandez, J. M. Fernandez Sevilla, J. F. Sanchez Fernandez, M. C. Ceron Garcia, and E. Molina Grima, “Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in CO2 removal processes”, Bioresour Technol, 100, pp. 5904-10, (2009).
31.Han, F., J. Huang, Y. Li, W. Wang, M. Wan, G. Shen, and J. Wang, “Enhanced lipid productivity of Chlorella pyrenoidosa through the culture strategy of semi-continuous cultivation with nitrogen limitation and pH control by CO2”, Bioresour Technol, 136, pp. 418-24, (2013).
32.Hanagata, N., T. Takeuchi, Y. Fukuju, D. J. Barnes, and I. Karube, “Tolerance of microalgae to high CO2 and high temperature”, Phytochemistry, 31, pp. 3345-3348, (1992).
33.Ho, S. H., C. Y. Chen, D. J. Lee, and J. S. Chang, “Perspectives on microalgal CO2-emission mitigation systems-a review”, Biotechnol Adv, 29, pp. 189-98, (2011).
34.Honda, R., J. Boonnorat, C. Chiemchaisri, W. Chiemchaisri, and K. Yamamoto, “Carbon dioxide capture and nutrients removal utilizing treated sewage by concentrated microalgae cultivation in a membrane photobioreactor”, Bioresour Technol, 125, pp. 59-64, (2012).
35.Hu, B., W. Zhou, M. Min, Z. Du, P. Chen, X. Ma, Y. Liu, H. Lei, J. Shi, and R. Ruan, “Development of an effective acidogenically digested swine manure-based algal system for improved wastewater treatment and biofuel and feed production”, Applied Energy, 107, pp. 255-263, (2013).
36.IEA, “Key World Energy STATISTICS”, International Energy Agency, International Energy Agency, (2012).
37.Israelsson, P. H., A. C. Chow, and E. E. Adams, “An updated assessment of the acute impacts of ocean carbon sequestration by direct injection”, International Journal of Greenhouse Gas Control, 4, pp. 262-271, (2010).
38.Iverson, T. M., “Evolution and unique bioenergetic mechanisms in oxygenic photosynthesis”, Curr Opin Chem Biol, 10, pp. 91-100, (2006).
39.Jacob-Lopes, E., C. H. G. Scoparo, L. M. C. F. Lacerda, and T. T. Franco, “Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors”, Chemical Engineering and Processing: Process Intensification, 48, pp. 306-310, (2009).
40.Jeong, M. L., J. M. Gillis, and J. Y. Hwang, “Carbon dioxide mitigation by microalgal photosynthesis”, Bulletin of the Korean Chemical Society, 24, pp. 1763-1766, (2003).
41.Johnson, H., “Resource limitation affects productivity and heterocyst formation in nitrogen-fixing cyanobacteria”, Environmental Science, Bates College,(2011 ).
42.Kastanek, F., S. Sabata, O. Solcova, Y. Maleterova, P. Kastanek, I. Branyikova, K. Kuthan, and V. Zachleder, “In-field experimental verification of cultivation of microalgae Chlorella sp. using the flue gas from a cogeneration unit as a source of carbon dioxide”, Waste Management & Research, 28, pp. 961-966, (2010).
43.Kedrick, M., “Algal bioreactors for nutrient removal and biomass production during the tertiary treatment of domestic sewage”, (2011).
44.Khan, E., and T. Wadhawan, “Emerging science and technology development in the US that can be beneficial to thailand”, (2013).
45.Kim, J., B. P. Lingaraju, R. Rheaume, J. Y. Lee, and K. F. Siddiqui, “Removal of Ammonia from Wastewater Effluent by Chlorella Vulgaris”, Tsinghua Science & Technology, 15, pp. 391-396, (2010).
46.Kurano, N., H. Ikemoto, H. Miyashita, T. Hasegawa, H. Hata, and S. Miyachi, “Fixation and utilization of carbon dioxide by microalgal photosynthesis”, Energy Conversion and Management, 36, pp. 689-692, (2006).
47.Lam, M. K., K. T. Lee, and A. R. Mohamed, “Current status and challenges on microalgae-based carbon capture”, International Journal of Greenhouse Gas Control, 10, pp. 456-469, (2012).
48.Lee, K., and C. G. Lee, “Nitrogen Removal from Wastewaters by Microalgae Without Consuming Organic Carbon Sources”, (2002a).
49.Lee, K., and C. G. Lee, “Nitrogen removal from wastewaters by microalgae without consuming organic carbon sources”, Journal of Microbiology and Biotechnology, 12, pp. 979-985, (2002b).
50.Li, Y., “Cultivation of algae on highly concentrated municipal wastewater as an energy crop for biodiesel production”, Minnesota, (2012).
51.Li, Y., Y. F. Chen, P. Chen, M. Min, W. Zhou, B. Martinez, J. Zhu, and R. Ruan, “Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production”, Bioresource Technology, 102, pp. 5138-5144, (2011).
52.Li, Y., M. Horsman, B. Wang, N. Wu, and C. Q. Lan, “Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans”, Appl Microbiol Biotechnol, 81, pp. 629-36, (2008).
53.Lingaraju, B. P., “Removal of Nitrogen from wastewater using Microalgae”, Cincinnati, (2011).
54.Maeda, K., M. Owada, N. Kimura, K. Omata, and I. Karube, “CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae”, Energy Conversion and Management, 36, pp. 717-720, (1995).
55.McGee, M., and T. McGee, “CO2Now.org”, (2007).
56.Miller, A. G., G. S. Espie, and D. T. Canvin, “Physiological aspects of CO2 and HCO3− transport by cyanobacteria: a review”, Canadian Journal of Botany, 68, pp. 1291-1302, (1990).
57.Muñoz, R., and B. Guieysse, “Algal–bacterial processes for the treatment of hazardous contaminants: A review”, Water Research, 40, pp. 2799-2815, (2006).
58.Oilgae, “Oilgae guide to algae-based wastewater treatment”, (2009).
59.Palmer, C. M., and T. E. Maloney, “The Use of Algal Cultures in Experiments Concerned with Water Supply Problems”, Butler University Botanical Studies, 11, (1954).
60.Park, J., J. Seo, and E. E. Kwon, “Microalgae Production Using Wastewater: Effect of Light-Emitting Diode Wavelength on Microalgal Growth”, Environmental Engineering Science, 29, pp. 995-1001, (2012).
61.Plaza, M. G., C. Pevida, A. Arenillas, F. Rubiera, and J. J. Pis, “CO2 capture by adsorption with nitrogen enriched carbons”, Fuel, 86, pp. 2204-2212, (2007).
62.Posten, C., “Design principles of photo-bioreactors for cultivation of microalgae”, Engineering in Life Sciences, 9, pp. 165-177, (2009).
63.Powell, N., A. Shilton, Y. Chisti, and S. Pratt,“Towards a luxury uptake process via microalgae – Defining the polyphosphate dynamics”, Water Research, 43, pp. 4207-4213, (2009).
64.Przytocka-Jusiak, M., M. Duszota, K. Matusiak, and R. Mycielski, “Intensive culture of Chlorella vulgaris/AA as the second stage of biological purification of nitrogen industry wastewaters”, Water Research, 18, pp. 1-7, (1984).
65.Pulz, O., “Photobioreactors: production systems for phototrophic microorganisms”, Applied Microbiology and Biotechnology, 57, pp. 287-293,(2001).
66.Pulz, O., and W. Gross, “Valuable products from biotechnology of microalgae”, Appl Microbiol Biotechnol, 65, pp. 635-48, (2004).
67.Radakovits, R., R. E. Jinkerson, S. I. Fuerstenberg, H. Tae, R. E. Settlage, J. L. Boore, and M. C. Posewitz, “Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana”, Nat Commun, 3, p. 686, (2012).
68.Radmann, E. M., F. V. Camerini, T. D. Santos, and J. A. V. Costa, “Isolation and application of SOX and NOX resistant microalgae in biofixation of CO2 from thermoelectricity plants”, Energy Conversion and Management, 52, pp. 3132-3136, (2011).
69.Rowley, W. M., “Nitrogen and phospgorus biomass-kinetic model for Chlorella vulgaris in a biofuel production scheme”, (2010).
70.Ruiz-Marin, A., L. G. Mendoza-Espinosa, and T. Stephenson, “Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater”, Bioresour Technol, 101, pp. 58-64, (2010).
71.Ruiz-Martinez, A., N. Martin Garcia, I. Romero, A. Seco, and J. Ferrer, “Microalgae cultivation in wastewater: nutrient removal from anaerobic membrane bioreactor effluent”, Bioresour Technol, 126, pp. 247-53, (2012).
72.Ryu, B. G., E. J. Kim, H. S. Kim, J. Kim, Y. E. Choi, and J. W. Yang, “Simultaneous treatment of municipal wastewater and biodiesel production by cultivation of Chlorella vulgaris with indigenous wastewater bacteria”, Biotechnology and Bioprocess Engineering, 19, pp. 201-210, (2014).
73.Ryu, H. J., K. K. Oh, and Y. S. Kim, “Optimization of the influential factors for the improvement of CO2 utilization efficiency and CO2 mass transfer rate”, Journal of Industrial and Engineering Chemistry, 15, pp. 471-475, (2009).
74.Samorì, G., “Algal wastewater treatment and biomass producing potential: nutrient removal efficiency and cell physiological responses”, (2012).
75.Satyanarayana, K. G., A. B. Mariano, and J. V. C. Vargas, “A review on microalgae, a versatile source for sustainable energy and materials”, International Journal of Energy Research, 35, pp. 291-311, (2011).
76.Schmidt, I., O. Sliekers, M. Schmid, E. Bock, J. Fuerst, J. G. Kuenen, M. S. M. Jetten, and M. Strous, “New concepts of microbial treatment processes for the nitrogen removal in wastewater”, FEMS Microbiology Reviews, 27, pp. 481-492, (2003).
77.Shi, J., “Removal of Nitrogen and phosphorus from municipal wastewater using microalgae immobilized on twin-layer system”, Köln, (2009).
78.Skjånes, K., P. Lindblad, and J. Muller, “BioCO2 – A multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products”, Biomolecular Engineering, 24, pp. 405-413, (2007).
79.Spalding, M. H., “Microalgal carbon-dioxide-concentrating mechanisms: Chlamydomonas inorganic carbon transporters”, J Exp Bot, 59, pp. 1463-73, (2008).
80.Sreesai, S., and P. Pakpain, “Nutrient Recycling by Chlorella vulgaris from Septage Effluent of the Bangkok City, Thailand”, ScienceAsia, 33, pp. 293-299, (2007).
81.Stark, K. D., “Improved Phosphorus Removal in Wastewater Through Combined Bacterial and Algal Treatment”, Missouri-Columbia, (2012)。
82.Su, F., C. Lu, W. Cnen, H. Bai, and J. F. Hwang, “Capture of CO2 from flue gas via multiwalled carbon nanotubes”, Science of The Total Environment, 407, pp. 3017-3023, (2009).
83.Sudarsan.J.S, Renganathan.K, and A. christy,“Cost effective method for ammoniacal Nitrogen removal using SBR coupled photobioreactor”, International Journal of Environmental Sciences, 2, (2011).
84.Sung, K. D., J. S. Lee, C. S. Shin, S. C. Park, and M. J. Choi, “CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics”, Bioresource Technology, 68, pp. 269-273, (1999).
85.Sydney, E. B., W. Sturm, J. C. de Carvalho, V. Thomaz-Soccol, C. Larroche, A. Pandey, and C. R. Soccol, “Potential carbon dioxide fixation by industrially important microalgae”, Bioresour Technol, 101, pp. 5892-6, (2010).
86.Tam, N. F., and Y. S. Wong, “Wastewater nutrient removal by Chlorella pyrenoidosa and Scenedesmus sp.”, Environ Pollut, 58, pp. 19-34, (1989).
87.Traviseo, L., R. Benitez, E. Sanchez, R. Borja, A. Martin, and M. F. Colmenarejo, “Batch mixed culture of Chorella vulgaris using settled and diluted piggery waste”, Ecological Engineering, 28, pp. 158-165, (2006).
88.Ugwu, C. U., H. Aoyagi, and H. Uchiyama, “Photobioreactors for mass cultivation of algae”, Bioresour Technol, 99, pp. 4021-8, (2008).
89.Wang, B., and C. Q. Lan, “Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent”, Bioresource Technology, 102, pp. 5639-5644, (2011).
90.Wang, B., Y. Li, N. Wu, and C. Q. Lan, “CO2 bio-mitigation using microalgae”, Appl Microbiol Biotechnol, 79, pp. 707-18, (2008).
91.Wang, L., M. Min, Y. Li, P. Chen, Y. Chen, Y. Liu, Y. Wang, and R. Ruan, “Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant”, Appl Biochem Biotechnol, 162, pp. 1174-86, (2010).
92.Woertz, I., A. Feffer, T. Lundquist, and Y. Nelson, “Algae Grown on Dairy and Municipal Wastewater for Simultaneous Nutrient Removal and Lipid Production for Biofuel Feedstock”, Journal of Environmental Engineering-Asce, 135, pp. 1115-1122, (2009).
93.Yeh, K. L., J. S. Chang, and W. M. chen, “Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31”, Engineering in Life Sciences, 10, pp. 201-208, (2010).
94.Yoo, C., S. Y. Jun, J. Y. Lee, C. Y. Ahn, and H. M. Oh, “Selection of microalgae for lipid production under high levels carbon dioxide”, Bioresource Technology, 101, pp. S71-S74, (2010).
95.Yue, L., and W. Chen, “Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae”, Energy Conversion and Management, 46, pp. 1868-1876, (2005).
96.Yun, Y. S., S. B. Lee, J. M. Park, C. I. Lee, and J. W. Yang, “Carbon dioxide fixation by algal cultivation using wastewater nutrients”, Journal of Chemical Technology and Biotechnology, 69, pp. 451-455, (1997).
97.Zeng, X., M. K. Danquah, X. D. Chen, and Y. Lu, “Microalgae bioengineering: From CO2 fixation to biofuel production”, Renewable and Sustainable Energy Reviews, 15, pp. 3252-3260, (2011).
98.朱敬平、鍾裕仁、許國恩、黃欣栩、江家菱、王郁萱、烏春梅、吳碩傳,「產業廢水污染調查及管制措施研議計畫(第三年)」,行政院環境保護署,(2011)。
99.江善宗、殷儷容,「纖維素水解酵素於綠藻工業之應用研究」,農業生技產業季刊,7,(2006)。
100.行政院環保署,「歷屆聯合國氣候變化綱要公約締約國大會重要決議」。
101.行政院環保署,『「放流水標準」及「水污染防治法事業分類及定義」修正草案公聽會』,(2010)。
102.行政院環保署,「晶圓製造及半導體製造業放流水標準」,(2011)。
103.行政院環保署,「光電材料及元件製造業放流水標準」,(2012)。
104.行政院環保署,「溫室氣體排放統計」,(2013)。
105.行政院環保署,「固定污染源空氣污染物排放標準」,(2013)。
106.何曉蓉,「不同培養條件對光生物反應器中Chlorella sp.物化性質之影響」,大仁科技大學,環境管理研究所,碩士學位論文,(2013)。
107.吳俊宗、王文正、郭詔中、徐彥斌、黃文亞、王永昇,「煙氣養藻固碳創新技術計畫」,行政院環保署,(2011)。
108.呂誌翼、周宏農、謝子陽、林燕輝,「在光合生物反應器中具環境影響力微藻對二氧化碳利用性之研究」,行政院環保署,(2005)。
109.呂誌翼、謝子陽、周宏農、林燕輝、邱子玲、李雨薇、黃資螢、吳佩茹、鍾友禮、王冠弼,「溫室氣體二氧化碳固定化光合生物反應器之開發」,行政院環保署,(2004)。
110.李飛、邢麗貞、閆春玲、安瑩,「環境因素對微藻去除氮磷的影響」,山東建筑工程學院學報,(2006)。
111.李潛、吳沿友、吳運東,「氟離子對萊茵衣藻和蛋白核小球藻的生理效應」,環境化學,33,(2014)。
112.沈宜蓉,「微藻減碳-打造綠色世代新紀元」,源雜誌,pp. 4-13,(2010)。
113.沈根祥、朱蔭湄、雷萍,「藻類凈化含氮磷有機污水及其利用研究進展」,農業環境保護,pp. 382-384,(2001)。
114.周廷耀,「碳源的添加對等鞭金藻增殖的影響」,國立中山大學,海洋生物研究所,碩士學位論文,(2003)。
115.周珊珊,「半導體及光電廢水處理技術概論」,工研院環安中心環科組污防室,(2010)。
116.林哲昌、鍾裕仁、朱敬平、許國恩、葉奕宏、烏春梅、吳碩傳,「高科技產業廢水水質特性分析及管制標準探討計畫」,行政院環保署,(2008)。
117.洪志瑞,「油質性微藻培養於新型光生化反應器之研究」,國立成功大學,化學工程學系,碩士學位論文,(2007)。
118.徐樹剛,「高濃度氨氮廢水回收與處理技術介紹」,工研院,(2011)。
119.高千雅,「建立一光生物反應系統用於微藻的高密度養殖與二氧化碳的減量」,國立交通大學,生化工程研究所,碩士學位論文,(2008)。
120.高政權、孟春曉,「微藻與水環境修復」,環境科學與技術,(2008)。
121.高浩峰、李環、韋萍,「半連續及連續培養小球藻減排沼液及CO2」,生物加工過程,(2012)。
122.張元榮,「淡水綠藻屬藻株培養條件與油脂含量之探討」,逢甲大學,環境工程與科學所,碩士學位論文,(2011)。
123. 張海陽、匡亞莉、林喆、劉春華、王英,「小球藻細胞表面特性研究」, 中國礦業大學學報,(2013)。
124.張義宏,「利用本土性小球藻固定二氧化碳之技術開發」,國立臺灣大學,農業化學研究所,博士學位論文,(2001)。
125.曹海、張馨允、孔維寶、楊紅、楊琪、王科榮,「利用啤酒廢水培養普通小球藻生產微藻生物質和油脂」,中國油脂,(2012)。
126.郭志博、潘湧璋,「城市污水廠污泥脫水液培養小球藻的研究」,中國科技論文在線,(2012)。
127.陳依旻,「薄膜生物處理系統(MBR)中溶解性微生物產物(SMP)特性與影響之研究」,國立中央大學,環境工程研究所,碩士學位論文,(2011)。
128.陳俞穎,「下水污泥前處理減量技術比較之研究」,國立台北科技大學,環境工程與管理研究所,碩士學位論文,(2008)。
129.陳海柳、潘綱、閆海、秦延文,「六價鉻抑制淡水藍綠藻生長的毒性效應」,環境科學,pp. 13-18,(2003)。
130.陳霖、李林聲、王明茲、李興龍、鄭行、陳必鏈,「利用甲醇廠CO2尾氣培養小球藻」,食品與發酵工業,(2012)。
131.彭于華,「探討以淡水藻類固定二氧化碳之生長條件」,國立屏東科技大學,環境工程與科學系所,碩士學位論文,(2009)。
132.曾毓翎,「後燃燒捕獲二氧化碳再利用於藻類培養之研究」,國立中興大學,環境工程學系,碩士學位論文,(2013)。
133.黃愛蘋,「利用微藻去除工業廢水中氮、磷並產生生質柴油之可行性研究」,國立中興大學,環境工程學系,碩士學位論文,(2010)。
134.經濟部能源局,「我國燃料燃燒二氧化碳排放統計」,(2013)。
135.趙華、董曉宇、牛堃、夏媛媛,「無機碳源對Chlorella sp. TCCC45058生長的影響」,環境科學與技術,(2012)。
136.劉清標,「利用小球藻Chlorella vulgaris去除氮、磷及重金屬之研究」,國立臺灣大學,農業化學研究所,碩士學位論文,(1994)。
137.歐陽崢嶸、溫小斌、耿亞紅、梅洪、胡鴻鈞、張桂艷、李夜光,「光照強度、溫度、pH、鹽度對小球藻(Chlorella)光合作用的影響」,武漢植物學研究,28, pp. 49-55,(2010)。
138.蔣本基,「國內環工科技研究計畫規劃回顧與展望」,(2007)。
139.闕壯群,「微藻類固碳工程」,生質能源,433,(2009)。
指導教授 曾迪華(Dyi-Hwa Tseng) 審核日期 2014-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明