博碩士論文 100326006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:52.14.50.132
姓名 余秉澤(Ping-Tse Yu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以還原碴廢棄材料捕捉二氧化碳之研究
(Carbon dioxide capture by waste material of reductive slag)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究★ 下水污泥灰渣特性及應用於水泥 砂漿之研究
★ 以Microtox檢測方法評估實際廢水生物毒性之研究★ 化學置換程序回收氯化銅蝕刻廢液之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究目的以還原碴廢棄材料捕捉二氧化碳,評估碳酸化效率、反應速率及反應機制。試驗中在不同的操作條件下,分別進行於氣液相系統及氣液固相系統。
萃取試驗結果指出,在pH值為4及固液比50 g/L 時,鈣離子最大萃取效率79.4%。氣液相系統於氣體流量1.0 L/min 及二氧化碳進流濃度100%下反應60分鐘,達最佳碳酸化效率67.6%。
此外,氣液固相碳酸化試驗結果顯示,在固液比30 g/L、氣體流量1.0 L/min、二氧化碳進流濃度20%下反應90分鐘,達最佳鈣轉化率51.3%。經動力模式模擬氣液固相碳酸化反應相當符合表面覆蓋模式,並由動力分析得知碳酸化反應速率常數隨氣體流量與二氧化碳進流濃度的增加及固液比的降低而增加。
摘要(英) The objectives of this study were to evaluate the carbonation efficiencies, reaction rate and mechanism for carbon dioxide capture by waste material of reductive slag. The experiments were carried out at gas-liquid phase system and gas-liquid-solid phase system under different operation parameters, respectively.
The results of extraction tests indicated that the maximum 79.4% of calcium was extracted from slag at pH 4 and solid/liquid ratio of 50 g/L. Then, the optimum 67.6% carbonation efficiency was obtained at gas flow rate of 0.5 L/min and inflow CO2 concentration of 100% during the 60 min reaction time for gas-liquid phase system.
In addition, the test results of gas-liquid-solid phase system revealed that the optimum calcium conversion was about 51.3% at the conditions of solid-liquid ratio was 30 g/L, gas flow rate was 1 L/min, and inflow CO2 concentration was 20% during the reaction time of 90 min. The result of simulation kinetic studies showed that the carbonation reaction occurred in gas-liquid-solid phase system was well fitted to the surface coverage model. Also, the reaction rate constant of carbonation was increased with the increase of gas flow rate and CO2 concentration, and with the decrease of solid-liquid ratio, respectively.
關鍵字(中) ★ 還原碴
★ 二氧化碳捕捉
★ 碳酸化
★ 表面覆蓋模式
關鍵字(英) ★ reductive slag
★ CO2 capture
★ carbonation
★ surface coverage model
論文目次 中文摘要
Abstract
目錄 .................................................................................................................................. I
圖目錄 ........................................................................................................................... III
表目錄 ............................................................................................................................ V
第一章 前言 ................................................................................................................... 1
1-1 研究緣起 ......................................................................................................... 1
1-2 研究目的 ......................................................................................................... 3
第二章 文獻回顧........................................................................................................... 4
2-1 選擇適當的封存材料 .................................................................................... 4
2-2 鹼性固體廢棄物資源再利用 ........................................................................ 6
2-2-1 鹼性固體廢棄物 ..................................................................................... 6
2-2-2 煉鋼爐碴來源及其特性 ......................................................................... 8
2-3 碳酸化反應途徑與機制 .............................................................................. 10
2-3-1 礦物碳酸化 ........................................................................................... 10
2-3-2 碳酸化程序 ........................................................................................... 12
2-4 碳酸化反應影響因子 .................................................................................. 16
2-4-1 氣固相碳酸化 ....................................................................................... 16
2-4-2 氣液固相碳酸化 ................................................................................... 17
2-5 廢棄材料封存二氧化碳研究現況 .............................................................. 20
2-5-1 國內研究現況 ....................................................................................... 20
2-5-2 國外研究現況 ....................................................................................... 25
2-6 碳酸化反應模式........................................................................................... 28
第三章 實驗材料及研究方法 .................................................................................... 30
3-1 研究架構 ....................................................................................................... 30 II
3-2 實驗材料與分析儀器 .................................................................................. 30
3-2-1 實驗材料................................................................................................ 30
3-2-2 主要試驗設備 ....................................................................................... 32
3-2-3 精密儀器分析方法 ............................................................................... 32
3-3 實驗方法 ....................................................................................................... 36
3-3-1 還原碴基本性質分析 ........................................................................... 36
3-3-2 樣品前處理 ........................................................................................... 38
3-3-3 萃取實驗................................................................................................ 38
3-3-4 碳酸化實驗 ........................................................................................... 39
第四章 結果與討論..................................................................................................... 44
4-1 還原碴物化特性........................................................................................... 44
4-2 氣液相碳酸化程序 ...................................................................................... 48
4-2-1 萃取實驗................................................................................................ 48
4-2-2 碳酸化反應影響因子 ........................................................................... 52
4-2-3 碳酸化反應產物特性 ........................................................................... 57
4-3 氣液固相碳酸化反應 .................................................................................. 60
4-3-1 碳酸化反應影響因子探討 ................................................................... 60
4-3-2 碳酸化反應程序 ................................................................................... 64
4-3-3 碳酸化反應產物特性 ........................................................................... 69
4-4 碳酸化反應機制及動力模式 ...................................................................... 71
4-4-1 碳酸化反應機制 ................................................................................... 71
4-4-2 氣液固相碳酸化動力模式 ................................................................... 74
第五章 結論與建議..................................................................................................... 83
5-1 結論 ............................................................................................................... 83
5-2 建議 ............................................................................................................... 84
參考文獻 ....................................................................................................................... 86
參考文獻 1.Allwood, J. M., J. M. Cullen, and R. L. Milford, “Options for achieving a 50% cut in industrial carbon emissions by 2050”, Environmental science & technology, vol. 44, pp. 1888-1894, (2010).
2.Arickx, S., V. De Borger, T. Van Gerven, and C. Vandecasteele, “Effect of carbonation on the leaching of organic carbon and of copper from MSWI bottom ash”, Waste Management, vol. 30, pp. 1296-1302, (2010).
3.Baciocchi, R., G. Costa, E. Di Bartolomeo, A. Polettini, and R. Pomi, “Carbonation of Stainless Steel Slag as a Process for CO2 Storage and Slag Valorization”, Waste and Biomass Valorization, vol. 1, pp. 467-477, (2010).
4.Back, M., M. Kuehn, H. Stanjek, and S. Peiffer, “Reactivity of Alkaline Lignite Fly Ashes Towards CO2 in Water”, Environmental science & technology, vol. 42, pp. 4520-4526, (2008).
5.Bobicki, E. R., Q. Liu, Z. Xu, and H. Zeng, “Carbon capture and storage using alkaline industrial wastes”, Progress in Energy and Combustion Science, vol. 38, pp. 302-320, (2012).
6.Bonenfant, D., L. Kharoune, S. b. Sauve´, R. Hausler, P. Niquette, M. Mimeault, and M. Kharoune, “CO2 Sequestration Potential of Steel Slags at Ambient Pressure and Temperature”, Industrial & Engineering Chemistry Research, vol. 47, pp. 7610-7616, (2008).
7.Chang, E. E., C. H. Chen, Y. H. Chen, S. Y. Pan, and P. C. Chiang, “Performance evaluation for carbonation of steel-making slags in a slurry reactor”, Journal of hazardous materials, vol. 186, pp. 558-564, (2011a).
8.Chang, E. E., A. C. Chiu, S. Y. Pan, Y. H. Chen, C. S. Tan, and P. C. Chiang, “Carbonation of basic oxygen furnace slag with metalworking wastewater in a slurry reactor”, International Journal of Greenhouse Gas Control, vol. 12, pp. 382-389, (2013).
9.Chang, E. E., S. Y. Pan, Y. H. Chen, H. W. Chu, C. F. Wang, and P. C. Chiang, “CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor”, Journal of hazardous materials, vol. 195, pp. 107-114, (2011b).
10.Costa, G., R. Baciocchi, A. Polettini, R. Pomi, C. D. Hills, and P. J. Carey, “Current status and perspectives of accelerated carbonation processes on municipal waste combustion residues”, Environmental monitoring and assessment, vol. 135, pp. 55-75, (2007).
11.Fagerlund, J., S. Teir, E. Nduagu, and R. Zevenhoven, “Carbonation of magnesium silicate mineral using a pressurised gas/solid process”, Energy Procedia, vol. 1, pp. 4907-4914, (2009).
12.Fauth, D. J., P. M. Goldberg, J. P. Knoer, Y. Soong, W. K. O′Connor, D. C. Dahlin, D. N. Nilsen, R. P. Walters, K. S. Lackner, H. J. Ziock, M. J. McKelvy, and Z.-Y. Chen, “Carbon dioxide storage as mineral carbonates”, Division Fuel Chemistry, pp. 708-712, (2000).
13.Fernández Bertos, M., S. J. R. Simons, C. D. Hills, and P. J. Carey, “A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2”, Journal of hazardous materials, vol. 112, pp. 193-205, (2004).
14.Goff, F., and K. S. Lackner, “Carbon Dioxide Sequestering Using Ultramafic Rocks”, Environmental Geosciences, vol. 5, pp. 89-102, (1998).
15.Huijgen, W., G. Witkamp, and R. Comans, “Mineral CO2 sequestration in alkaline solid residues”, Greenhouse Gas Control Technologies, vol. II, pp. 2415-2418, (2005).
16.Huijgen, W. J. J., and R. N. J. Comans, “Carbon dioxide sequestration by mineral carbonation Literature Review 2003”, ECN-Clean Fossil Fuels Environmental Risk Assessment, ECN-C--03-016, (2003).
17.Huijgen, W. J. J., and R. N. J. Comans, “Carbon dioxide sequestration by mineral carbonation Literature Review Update 2003-2004”, Energy research Centre of the Netherlands, (2005a).
18.Huijgen, W. J. J., and R. N. J. Comans, “Mineral CO2 Sequestration by Steel Slag Carbonation”, Environmental science & technology, vol. 39, pp. 9676-9682, (2005b).
19.Huntzinger, D. N., J. S. Gierke, S. K. Kawatra, T. C. Eisele, and L. L. Sutter, “Carbon Dioxide Sequestration in Cement Kiln Dust through Mineral Carbonation”, Environmental science & technology, vol. 43, pp. 1986-1992, (2009a).
20.Huntzinger, D. N., J. S. Gierke, L. L. Sutter, S. K. Kawatra, and T. C. Eisele, “Mineral carbonation for carbon sequestration in cement kiln dust from waste piles”, Journal of hazardous materials, vol. 168, pp. 31-37, (2009b).
21.Iizuka, A., M. Fujii, A. Yamasaki, and Y. Yanagisawa, “Development of a New CO2 Sequestration Process Utilizing the Carbonation of Waste Cement”, Industrial & Engineering Chemistry Research, vol. 43, pp. 7880-7887, (2004).
22.Jo, H. Y., J. H. Kim, Y. J. Lee, M. Lee, and S. J. Choh, “Evaluation of factors affecting mineral carbonation of CO2 using coal fly ash in aqueous solutions under ambient conditions”, Chemical Engineering Journal, vol. 183, pp. 77-87, (2012).
23.Kakizawa, M., A. Yamasaki, and Y. Yanagisawa, “A new CO2 disposal process via artificial weathering of calcium silicate accelerated by acetic acid”, Energy, vol. 26, pp. 341-354, (2001).
24.Kodama, S., T. Nishimoto, N. Yamamoto, K. Yogo, and K. Yamada, “Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution”, Energy, vol. 33, pp. 776-784, (2008).
25.Kojima, T., A. Nagamine, N. Ueno, and S. Uemiya, “Absorption and fixation of carbon dioxide by rock weathering”, Energy Conversion and Management, vol. 38, pp. S461-S466, (1997).
26.Lackner, K. S., “Carbonate Chemistry for Sequestering Fossil Carbon”, Annual Review of Energy and the Environment, vol. 27, pp. 193-232, (2002).
27.Lange, L. C., C. D. Hills, and A. B. Poole, “The influence of mix parameters and binder choice on the carbonation of cement solidified wastes”, Waste Management, vol. 16, pp. 749-756, (1996).
28.Lekakh, S. N., C. H. Rawlins, D. G. C. Robertson, V. L. Richards, and K. D. Peaslee, “Kinetics of Aqueous Leaching and Carbonization of Steelmaking Slag”, Metallurgical and Materials Transactions B, vol. 39, pp. 125-134, (2008).
29.Mattila, H. P., I. Grigaliūnaitė, and R. Zevenhoven, “Chemical kinetics modeling and process parameter sensitivity for precipitated calcium carbonate production from steelmaking slags”, Chemical Engineering Journal, vol. 192, pp. 77-89, (2012).
30.Montes-Hernandez, G., R. Perez-Lopez, F. Renard, J. M. Nieto, and L. Charlet, “Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash”, Journal of hazardous materials, vol. 161, pp. 1347-1354, (2009).
31.Nikulshina, V., M. E. Gálvez, and A. Steinfeld, “Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2–CaCO3–CaO solar thermochemical cycle”, Chemical Engineering Journal, vol. 129, pp. 75-83, (2007).
32.Pérez-López, R., G. Montes-Hernandez, J. M. Nieto, F. Renard, and L. Charlet, “Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas emissions into the atmosphere”, Applied Geochemistry, vol. 23, pp. 2292-2300, (2008).
33.Pan, S. Y., P. C. Chiang, Y. H. Chen, C. S. Tan, and E. E. Chang, “Kinetics of carbonation reaction of basic oxygen furnace slags in a rotating packed bed using the surface coverage model: Maximization of carbonation conversion”, Applied Energy, vol. 113, pp. 267-276, (2014).
34.Pontiga, F., J. M. Valverde, H. Moreno, and F. J. Duran-Olivencia, “Dry gas–solid carbonation in fluidized beds of Ca(OH)2 and nanosilica/Ca(OH)2 at ambient temperature and low CO2 pressure”, Chemical Engineering Journal, vol. 222, pp. 546-552, (2013).
35.Prigiobbe, V., A. Polettini, and R. Baciocchi, “Gas–solid carbonation kinetics of Air Pollution Control residues for CO2 storage”, Chemical Engineering Journal, vol. 148, pp. 270-278, (2009).
36.Rendek, E., G. Ducom, and P. Germain, “Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash”, Journal of hazardous materials, vol. 128, pp. 73-79, (2006).
37.Seifritz, W., “CO2 disposal by means of silicates”, Nature, vol. 345, pp. 486-486, (1990).
38.Shih, S. M., C. S. Ho, Y. S. Song, and J. P. Lin, “Kinetics of the Reaction of Ca(OH)2 with CO2 at Low Temperature”, Industrial & Engineering Chemistry Research, vol. 38, pp. 1316-1322, (1999).
39.Sicong, T., J. Jianguo, and Z. Chang, “Influence of flue gas SO2 on the toxicity of heavy metals in municipal solid waste incinerator fly ash after accelerated carbonation stabilization”, Journal of hazardous materials, vol. 192, pp. 1609-1615, (2011).
40.Sipilä, J., S. Teir, and R. Zevenhoven, “Carbon dioxide sequestration by mineral carbonation Literature Review update 2005-2007”, Åbo Akademi University Faculty of Technology Heat Engineering Laboratory, (2008).
41.Tian, S., and J. Jiang, “Sequestration of flue gas CO2 by direct gas-solid carbonation of air pollution control system residues”, Environmental science & technology, vol. 46, pp. 13545-13551, (2012).
42.Ukwattage, N. L., P. G. Ranjith, and S. H. Wang, “Investigation of the potential of coal combustion fly ash for mineral sequestration of CO2 by accelerated carbonation”, Energy, vol. 52, pp. 230-236, (2013).
43.Vatopoulos, K., and E. Tzimas, “Assessment of CO2 capture technologies in cement manufacturing process”, Journal of Cleaner Production, vol. 32, pp. 251-261, (2012).
44.Wang, L., Y. Jin, and Y. Nie, “Investigation of accelerated and natural carbonation of MSWI fly ash with a high content of Ca”, Journal of hazardous materials, vol. 174, pp. 334-343, (2010).
45.Yadav, V. S., M. Prasad, J. Khan, S. S. Amritphale, M. Singh, and C. B. Raju, “Sequestration of carbon dioxide (CO2) using red mud”, Journal of hazardous materials, vol. 176, pp. 1044-1050, (2010).
46.Yu, J., and K. Wang, “Study on Characteristics of Steel Slag for CO2 Capture”, Energy & Fuels, vol. 25, pp. 5483-5492, (2011).
47.Zevenhoven, R., and J. Fagerlund,“Fixation of Carbon Dioxide into Inorganic Carbonates: The Natural and Artificial “Weathering of Silicates””, In Carbon Dioxide as Chemical Feedstock, 353-379: Wiley-VCH Verlag GmbH & Co. KGaA(2010).
48.Cunningham, W. P., M. A. Cunningham, B. W. Saigo, “Environmental Science: A Global Concern”, Mc Graw-Hill 8th Education, New York, USA, (2005).
49.Levenspiel, Octave.,“Chemical reaction engineering”, Wiley 3rd edition, (1988).
50.IPCC,“IPCC Special Report on Carbon Dioxide Capture and Storage”, Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, 442 pp, (2005)
51.Teir, S.,“Fixation of carbon dioxide by producing carbonates from minerals and steelmaking slags”,Department of Energy Technology, Helsinki University of Technology, Doctoral, Finland, (2008).
52.朱孝文,「以鹼性固體廢棄物碳酸化法封存二氧化碳」,環境工程研究所,國立台灣大學,碩士論文,台北,(2007)。
53.邱安家,「利用轉爐石與鋼鐵廢水在漿體反應槽中進行碳酸化反應」,環境工程研究所,國立台灣大學,碩士論文,台北,(2011)。
54.陳則綸,「以轉爐石與冷軋廢水於旋轉填充床捕捉二氧化碳之研究」,環境工程研究所,國立台灣大學,碩士論文,台北,(2012)。
55.陳駿華,「以流體化床進行濕式碳酸化反應之績效評量」,環境工程研究所,國立台灣大學,碩士論文,台北,(2009)。
56.張高僑,「鈣系爐渣封存二氧化碳行為之研究」,環境工程研究所,國立成功大學,碩士論文,台南,(2008)。
57.程士豪,「模擬煙道氣進行轉爐石碳酸化之研究」,環境工程與科學系,輔英科技大學,碩士論文,高雄,(2008)。
58.傅國柱,「還原碴取代部份水泥之研究」,土木工程研究所,國立中央大學,碩士論文,中壢,(2002)。
59.蔡弦志,「再生材料應用於道路鋪面工程之成本效益研究」,土木工程研究所,國立中央大學,碩士論文,中壢,(2003)。
60.潘述元,「在超重力旋轉填充床中利用煉鋼爐石碳酸化反應進行二氧化碳捕捉」,環境工程研究所,國立台灣大學,碩士論文,台北,(2011)。
61.鄭清元,「電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究」,土木工程研究所,國立中央大學,碩士論文,中壢,(2000)。
62.曾迪華, 張木彬, 廖萬里, 羅友志, 陳政澤,「低污染工業製程及污染防治技術之調查研究-鋼鐵業」,臺灣省環境保護處委託研究報告,國立中央大學環境工程研究所,(1994)。
63.劉國忠,「煉鋼爐碴之資源化技術與未來推展方向」,環保月刊,第1卷第4期,pp.114-136,(2001)。
64.經濟部能源局,「我國燃料燃燒CO2排放統計與分析」,經濟部能源局,(2011)。
指導教授 曾迪華(Dyi-Hwa Tseng) 審核日期 2014-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明