博碩士論文 100326005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.143.255.123
姓名 陳政傑(Chen Jeng Jie)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 利用系統動力模式建立CFSBR即時自動操作與控制策略之研究
相關論文
★ 彩色濾光片生產線清潔生產之改善研究★ 以離子交換法處理半導體廠氫氧化四甲基銨廢液之研究
★ 建立量測水位、MLSS濃度與SS濃度及污泥沉澱速度光學量測裝置之研究★ 奈米晶相Fe(OH)3催化臭氧反應程序處理油煙VOCs之發展
★ 無塵室揮發性有機污染物防制對策的探討★ 應用數位影像技術於廢水真色色度監測之研究
★ 污水處理廠操作最佳化之研究★ 河川流域水土資源承載力與永續力評量模式之發展
★ 單槽連續進流回分式活性污泥系統微生物菌相之研究★ 單槽連續進流回分式活性污泥系統溶氧控制之研究
★ 工業區廢水管理資訊系統之發展與建立-以觀音工業區為例★ 河川流域水管理系統動力學模式之發展與建立
★ 連續流回分式活性污泥系統好氧相曝氣控制策略之研究-線上即時量測溶氧轉換率與需氧量方法之建立★ 智慧型環境詞彙庫之發展與建置
★ 環境法規資料庫之發展與建置★ 連續流循序批分式活性污泥系統 好氧相即時曝氣控制策略之發展 — 低溶氧生物脫氮除磷程序控制技術之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 連續流循序批式活性污泥系統(Continuous-Flow Sequencing Batch Reactor, CFSBR)透過現地單槽式處理,解決下水道維護困難與建設的問題,為未來發展之趨勢。由於進流水水質、水量及環境條件會隨著時間變化,過去透過判斷pH與ORP反曲點以即時判斷微生物反應終點,以提升系統處理效益。但皆以靜態方式判斷折點,當進流水水質濃度高與微生物反應速率慢,導致微生物無法在限制時間內達反應之終點,造成系統無法達成處理之目的。且在系統運作初期,各反應相運作時間皆無擬定之依據,導致需要透過出流水水質結果持續修正,如此,造成時間與實驗成本的浪費。為了解決上述之問題,本研究欲建立一自動控制系統,透過系統動力模式依據進流水水質擬定操作策略,系統依據產出之操作策略運作,可將進流水水質處理至符合預期之水質,COD<100 mg/L、SS<30 mg/L及氨氮<10 mg/L。且透過建立控制策略擬定流程,可依據監測資訊與異常訊號,判斷系統問題與分析造成問題之原因,並產生解決對策,以及時解決進流水水質、水量及微生物隨時間改變與軟硬體異常之問題,藉此達成系統自動化之目的。
摘要(英) A CFSBR(Continuous-Flow Sequencing Batch Reactor)solve difficult problem of sewer of the construction and maintenance by using a single reactor on site. As a result of the influent of water of the quality, discharge of quantity and environmental conditions will change over time, in order toenhance the system processing efficiency, using pH and ORP broken point to judge microbial terminal point. When high concentrations of the influent water quality and microbial reaction rate is slow, judging microbial terminal point can’t make system achieve the purpose. In the initial period of operation and system produce strategy which make system operate without adequate foundation, so strategy need to sustained correction by analyzing result of the effluent, resulting in a waste of time and experimental costs. In this research is to establish an automatic control system, developed operating system dynamic model based strategy through the influent water quality for solve the above problems, and CFSBR base on strategy can beinfluent water treatment to meet the water quality expected, COD<100 mg/L,SS<30 mg/L and NH4+<10 mg/L. By creating a process to develop control strategies can be based on monitoring information and anomalies, determine system problems and analyze the causes of the problems caused and produce solution, as well as solve the influent of water of the quality, discharge of quantity and microbiological changes over time problems with hardware and software anomalies, thereby achieve the purpose of automation systems.
關鍵字(中) ★ 連續流循序批次活性污泥系統
★ 系統動力模式
★ 自動監測與控制系統
關鍵字(英) ★ Continuous-Flow SequencingBatch Reactor(CFSBR)
★ System dynamics model
★ automatic monitoring and control
論文目次 目錄
摘要..............................................I
ABSTRACT........................................................................................................II
第一章 前言...................................................................................................... 1
1.1 研究緣起.............................................................................................. 1
1.2 研究目的.............................................................................................. 2
第二章 文獻回顧.............................................................................................. 3
2.1 CFSBR系統之發展沿革 ..................................................................... 3
2.2 SBR系統脫氮除磷程序之沿革 .......................................................... 4
2.2.1 厭氧相生化反應機制與其影響因子.............................................. 4
2.2.2 好氧相生化反應機制與其影響因子.............................................. 6
2.2.3 缺氧相生化反應機制與其影響因子.............................................. 8
2.3 系統動力學.......................................................................................... 9
2.4 SBR自動監控系統 ............................................................................ 10
2.4.1 pH量測原理與自動控制之應用 ................................................... 10
2.4.2 DO量測原理與自動控制之應用 .................................................. 12
2.4.3 ORP量測原理與自動控制之應用 ................................................ 13
第三章 研究方法............................................................................................ 17
3.1 研究內容與流程................................................................................ 17
3.2 CFSBR之系統界定 ........................................................................... 19
3.3 CFSBR運作程序設計 ....................................................................... 21
3.4 CFSBR系統動力模式建立 ............................................................... 24
3.5 CFSBR操作策略之建立 ................................................................... 32
3.6 CFSBR控制策略之建立 ................................................................... 35
3.7 CFSBR自動監控系統建立 ............................................................... 38
第四章 結果與討論........................................................................................ 41
4.1 CFSBR系統界定 ............................................................................... 41
4.1.1 系統進流水之界定........................................................................ 41
4.1.2 CFSBR系統組成............................................................................ 42
4.1.3 CFSBR系統功能............................................................................ 47
4.1.4 CFSBR系統目的分析.................................................................... 48
4.1.5 小結 ................................................................................................ 48
4.2 CFSBR運作程序設計 ....................................................................... 48
4.2.1 進流廢水來源與水質特性分析.................................................... 49II
4.2.2 CFSBR系統運作參數與其程序設計............................................ 53
4.2.3 小結 ................................................................................................ 54
4.3 CFSBR系統動力模式建立 ............................................................... 55
4.3.1 CFSBR系統動力學公式建立與微生物反應作用機制探討 ....... 55
4.3.2 模式限制條件之建立.................................................................... 69
4.3.3 CFSBR系統動力模式邏輯層........................................................ 69
4.3.4 CFSBR系統動力模式建立............................................................ 79
4.3.5 CFSBR系統動力模式測試............................................................ 85
4.3.6 小結 ................................................................................................ 93
4.4 CFSBR操作策略建立 ....................................................................... 93
4.4.1 操作策略擬定參數設定.................................................................... 93
4.4.2 操作策略擬定.................................................................................... 95
4.4.3 操作策略測試.................................................................................... 97
4.4.4 小結.................................................................................................. 101
4.5 CFSBR控制策略之建立 ................................................................. 101
4.5.1 CFSBR系統造成問題判斷與其解決對策.................................. 101
4.5.2 控制策略流程之建立.................................................................. 107
4.5.3 控制策略流程之測試.................................................................. 112
4.5.4 小結 .............................................................................................. 114
4.6 自動監控系統.................................................................................. 114
4.6.1 自動監控系統功能層.................................................................. 114
4.6.2 自動監控系統邏輯層.................................................................. 116
4.6.3 自動監控系統 .............................................................................. 119
第五章 結論與建議...................................................................................... 120
5.1 結論.................................................................................................. 120
5.2 建議.................................................................................................. 121
參考文獻..................................................................................................... 122
參考文獻 參考文獻
1. Baikun L. and S. Irvin, “The comparison of alkalinity and ORP as indicators for nitrification and denitrification in a sequencing batch reactor (SBR),” Biochemical Engineering Journal, Vol. 34,Issue 3,pp. 248–255 (2007).
2. Bruce E., perry L., Environmental Biotechnology:Principles and Applications,Mcgraw-hill,(2001).
3. Che Ok J., D. S. Lee, M. W. Lee, and J. M. Park, “Enhanced Biological Phosphorus Removal in an Anaerobic–Aerobic Sequencing Batch Reactor: Effect of pH,” Water Environment Research, Vol. 73,Issue 3,pp. 248–255 (2001).
4. Che Ok J. and J. M. Park, “Enhanced biological phosphorus removal in a sequencing batch reactor supplied with glucose as a sole carbon source,” Biochemical Engineering Journal, Vol. 34,Issue 3, pp. 301-305 (2000).
5. Mulkerrins D., A.D.W. Dobson, and E. Colleran, “Parameters affecting biological phosphate removal from wastewaters,” Environment International , Vol. 30,Issue 2, pp. 249-259(2004).
6. Joost G., B. Sellner, and W. Tappe, “Ammonia Oxidation in Nitrosomonas at NH3 Concentration near Km: Effects of pH andTemperature,” Water Research, Vol. 28,Issue 12, pp. 2561–2566(1994).
7. Letizia Z., N. Frison, E. Nota, M. Tomizioli, D. Bolzonella, and F. Fatone , “Progress in real-time control applied to biological nitrogen removal from wastewater . A short-review,” Desalination, Vol. 286, pp. 1-7 (2012).
8. Matthew M., L. Myers, R. Okey, and C. Hill, “THE USE OF OXIDATION-REDUCTION POTENTIAL AS A MEANS OF CONTROLLING EFFLUENT AMMONIA CONCENTRATION IN AN EXTENDED AERATION ACTIVATED SLUDGE SYSTEM,” Water Environment Foundation , pp. 5901-5926 (2006).
9. M.V.R., J. Ribes, A. Seco, J. Ferrer, “An advanced control strategy for biological nutrient removal in continuous systems based on pH and ORP sensors ,”Chemical Engineering Journal , Vol. 183, pp. 212-221 (2012)
10. Mino T., Effect on Phosphorus Accumulation on Acetate Metabolism in the Biological Phosphorus Removal Process. In Advances in Water Pollution Control: Biological Phosphate Removal from Wastewaters. R. Ramadori (Ed.), Pergamon Press, Oxford, Eng.(1987).
11. P.T. Martín de la V., E. M. de Salazar, M.A. Jaramillo, J. Cros , “New contributions to the ORP & DO time profile characterization to improve biological nutrient removal,” Bioresource Technology, Vol. 114, pp. 160-167(2012)
12. Pankaj T., T. Nandy, P. Ukey, P. Manekar, “Correlating on-line monitoring parameters, pH, DO and ORP with nutrient removal in an intermittent cyclic process bioreactor system,” Bioresource Technology, Vol. 99,Issue 16, pp. 7630-7635 (2008).
13. S. L., A. Pinto, N. Basset, J. Dosta , J. Mata-Álvarez , “ORP slope and feast–famine strategy as the basis of the control of a granular sequencing batch reactor treating winery wastewater,” Biochemical Engineering Journal, Vol. 68, pp. 190-198(2012).
14. Kousei S., Y. Yamamoto, K. Tsumura, S. Hatsumata, and M. Tatewaki, “Simultaneous Removal of Nitrogen and Phosphorus in IntermittentlyAerated 2-Tank Activated Sludge Process Using DO and ORP-Bending Point Control ,” Water Science and Technology, Vol. 68, NO.11-12, pp. 513-521(1994).
15. Susanne L. and H. Horn, “Evaluating operation strategies and process stability of a single stage nitritation–anammox SBR by use of the oxidation–reduction potential (ORP),”Bioresource Technology, Vol. 107, pp. 70-77(2012).
16. S.G. W., C.S. Ra,“Biological nitrogen removal with a real-time control strategy using moving slope changes of pH(mV)- and ORP-time profiles,” water research , Vol. 45,Issue 1, pp. 171-178(2011).
17. Watanabe S., Baba K. and Nogita S., Basic Studies on an ORP/External Carbon Source Control System for the Biological Denitrification Process. Instrumentation and Control Of Water and Wastewater Treatment and Transport System,4th IAWPRC Workshop (1985).
18. W.W. E., J.B. Patoczka, and G.W. Pulliam, “ANAEROBIC VERSUS AEROBIC TREATMENT IN THE U.S.A,”A WARE Incorporated, 227 French Landing, Nashville, TN 37228, USA(1998).
19. Yan-ying X., X. Zheng, T. Yang,and Y. Zou, “Monitoring ORP, pH and EC for the Start-up of an A/O SBR,” Bioinformatics and Biomedical Engineering, pp.2837-2840 (2008).
20. YSI Inc,ORP Management in Wastewater as an Indicator of Process Efficiency,YSI Environmental (2008).
21. 陳萬原,“單槽連續進流回分是活性污泥系統自動監控策略之研究-以ORP、pH 為監控參數”,碩士論文,國立中央大學環境工程研究所(1996)。
22. 楊素禎,“單槽連續進流回分式活性污泥系統處理動態進流污水自動控制之研究”,碩士論文,國立中央大學環境工程研究所(1998)。
23. 邱柏仁,“單槽連續進流回分式活性污泥系統溶氧控制之研究”,碩士論文,國立中央大學環境工程研究所(2001)。
24. 許添財,“連續流回分式活性污泥系統好氧相曝氣控制策略之研究-線上即時量測溶氧轉換率與需氧量方法之建立”,碩士論文,國立中央大學環境工程研究所(2002)。
25. 卓伯全,“連續流循序批分式活性污泥系統好氧相即時控制策略之發展-低溶氧生物脫氮除磷程序控制技術之研究”,博士論文,國立中央大學環境工程研究所(2003)。
26. 羅家麒,“連續流循序批分式活性污泥好氧相曝氣控制策略之研究-線上即時監測系統攝氧率方法建置及其攝氧行為之研究”,碩士論文,國立中央大學環境工程研究(2004)。
27. 陳義昇,“CFSBR 厭氧相/沉澱相/排水相/排泥相即時控制系統改良之研究”,碩士論文,國立中央大學環境工程研究所(2005)。
28. 鄭俊忠,“CFSBR好氧相/缺氧相即時控制系統改良之研究”,碩士論文,國立中央大學環境工程研究所(2005)。
29. 歐陽嶠暉,下水道工程學,長松文化公司(2011)。
30. 李季眉、邱應志、張怡塘,環境微生物,第二版,中華民國環境工程學會(2012)。
31. 石濤,環境微生物,鼎茂圖書出版股份有限公司(2006)。
指導教授 廖述良(Shu-Liang Liaw) 審核日期 2014-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明