博碩士論文 973406002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.143.239.173
姓名 洪保鎮(Pao-Chen Hung)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 熱裂解系統對戴奧辛之去除特性研究
(Characteristics of PCDD/F removal from fly ash and soil via pyrolysis)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究探討熱裂解技術於高溫缺氧環境下處理都市廢棄物焚化集塵灰及中石化安順廠污染土壤中PCDD/Fs之去除效率與降解特性。集塵灰與污染土壤之PCDD/Fs濃度及物種分佈有顯著的差異。集塵灰濃度較低(3.54 ng-TEQ/g),2,3,4,7,8-PeCDF為主要的毒性貢獻者;污染土壤濃度達114 ng-TEQ/g以上,質量或毒性濃度皆以OCDD/F為主。實驗室批次試驗結果指出溫度對PCDD/Fs去除之影響較反應時間顯著。集塵灰經溫度300oC、反應時間2小時以上之處理後,PCDD/Fs殘餘濃度可低於法規標準;污染土壤因濃度高,物種多為化學性質穩定的高氯數物種,因此溫度需達600oC以上,才可在30分鐘的反應時間內使PCDD/Fs毒性符合法規標準。實驗結果顯示PCDD/Fs有顯著的脫氯現象,其中又以污染土壤PCDD/Fs脫氯途徑對毒性去除的影響最為顯著,因質量及毒性濃度皆由高氯數物種所貢獻,故脫氯是否完全將顯著影響PCDD/Fs的毒性去除。集塵灰及土壤PCDD/Fs在相對較低的操作溫度可發現2,3,7,8-TCDD的生成,並發現HxCDD/Fs有顯著的脫氯門檻。在連續熱裂解系統方面,集塵灰於操作溫度350oC時可快速降解PCDD/Fs,停留時間20 min.以上皆可確保殘留濃度符合法規標準;在連續處理污染土壤方面,因土壤於有效高溫區之停留時間較短(<33 min.),造成PCDD/Fs去除效率在相同溫度下略低於實驗室批次試驗之結果,操作溫度達600oC以上才可降低殘留濃度至法規標準。在連續熱處理系統中仍可觀察到2,3,7,8-TCDD的顯著生成,導致PCDD/Fs之毒性去除效率低於質量去除效率。在氣相脫附方面,以連續熱裂解系統處理集塵灰時,溫度相對較低,脫附率僅佔總輸入量的0.005%以下,氣相PCDD/Fs濃度已低於0.1 ng-TEQ/Nm3之排氣標準;當連續處理污染土壤時,脫附量雖僅佔總輸入量的0.05%以下,但因操作溫度相對較高且污染土壤PCDD/Fs濃度亦高,故排氣PCDD/Fs濃度顯著高於我國嚴格之排放標準。爰此,本研究針對連續處理污染土壤後之系統排氣特性設計一空氣污染防制流程,設備依序為袋濾式集塵器、驟冷塔及多層活性碳吸附系統,以有效控制處理污染土壤過程中產生之含高濃度PCDD/Fs、五氯酚及汞之氣流。測試結果指出袋式集塵器可有效去除粒狀污染物,並確保出口粒狀物濃度低於3 mg/Nm3,但因氣流溫度高,污染物多以氣相存在,總去除效率皆在4.5%以下。於驟冷塔中,過飽和之元素汞蒸氣及水氣快速冷凝聚集,並排入冷凝液收集槽,各污染物的去除效率皆高於75%,但驟冷塔出口PCDD/Fs及汞濃度仍高於法規標準,故以我國專利技術多層活性碳吸附床作最後之把關,測試結果證實各污染物之排氣濃度皆可符合我國固定污染源最嚴格之排放標準。本研究最終成功建置並驗證一套可有效去除集塵灰及污染土壤中PCDD/Fs污染物,並有效避免二次污染之熱裂解處理系統及空氣污染防制程序。
摘要(英) Pyrolysis with oxygen-lack condition is applied to remove PCDD/Fs from the fly ash of a municipal waste incinerator (MWI) and contaminated soil of the pentachlorophenol factory in this study. PCDD/F concentration of the raw fly ash (3.54 ng-TEQ/g) is significantly lower than that of the contaminated soil (>114 ng-TEQ/g). Regarding TEQ distribution of PCDD/F congeners, 2,3,4,7,8-PeCDF and OCDD/F are the main toxic contributors of the fly ash and the contaminated soil, respectively. The results obtained with the laboratory-scale batch-type system indicate that influence of temperature is more important than reaction time. For the fly ash, residual concentration of PCDD/Fs in treated ash is efficiently reduced to lower than 1.0 ng-TEQ/g with pyrolysis temperature of 300oC and reaction time of 2 hours. For the contaminated soil, the operating temperature higher than 600oC is needed to ensure that residual PCDD/F concentration in remediated soil is lower than the limit with reaction time of 30 min. because PCDD/F concentration in the contaminated soil is significantly higher than that in the fly ash. Significant dechlorination of PCDD/Fs is significantly found in pyrolysis system. TEQ removal efficiency of PCDD/Fs may be significantly decreased due to formation of low chlorinated congeners. Formation of 2,3,7,8-TCDD, the most toxic PCDD/F congener, is found with specific operating parameters and accumulation of HxCDD/Fs due to dechlorination of highly chlorinated congeners is also found. Regarding the continuous pyrolysis system (CPS), the operating parameters to ensure that residual PCDD/F concentrations can meet the standard are significantly different between the fly ash and the contaminated soil. For fly ash, operating the CPS at a temperature of 350oC and retention time of ≥20 min. is feasible, but temperature ≥600oC and retention time ≥33 min. are needed for effective remediation of contaminated soil. Formation of 2,3,7,8-TCDD is still found, resulting in relatively lower TEQ removal efficiency compared with mass removal efficiency. Nevertheles, PCDD/F concentration in the exhaust of CPS is significantly higher than the emission limit of Taiwan even though less than 0.05% of PCDD/Fs input rate is desorbed. For better control pollutant emission, an air pollution control process consisting of baghouse, quench tower and multi-layer activated carbon (AC) bed is installed for the removal of particulate matter, PCDD/Fs, pentachlorophenol (PCP) and mercury. Firstly, particulate matter (PM) is efficiently filtrated by baghouse and the PM concentration at the outlet of baghouse is lower than 3 mg/Nm3. However, removal efficiencies of PCDD/Fs, PCP and mercury achieved with baghouse are relative low (≤4.5%) due to high temperature of exhaust in the baghouse. As flue gas passes through the quench tower, temperature is rapidly decreased. Water vapor and elementary mercury are effectively condensed and collected. Removal efficiencies of three pollutants achieved with quench tower are higher than 75%, but pollutant concentrations are still higher than emission limits. Therefore, multi-layer AC bed is essential to adsorb gaseous pollutants to make sure the emission of PCDD/Fs, PCP and mercury achieved with three-layer AC bed are lower than the regulatory limits. Overall, a continuous pyrolysis system with effective air pollution control process is developed in this study and experimental results indicate that PCDD/Fs can be efficiently removed from fly ash, contaminated soil and exhaust of CPS.
關鍵字(中) ★ 戴奧辛
★ 熱裂解
★ 脫氯反應
★ 中間處理
★ 土壤整治
★ 空氣污染防制流程
關鍵字(英) ★ PCDD/Fs
★ Pyrolysis
★ Dechlorination
★ Intermediate treatment
★ Soil remediation
★ Air pollution control process
論文目次 目錄
摘要 I
Abstract III
目錄 V
圖目錄 IX
表目錄 XIII
第一章 研究緣起 1
1.1 前言 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 PCDD/Fs之危害 4
2.1.1 基本物化特性 4
2.1.2 含PCDD/Fs固體廢棄物來源及潛在危害 8
2.1.3 PCDD/Fs的環境污染 12
2.2 不同污染基質中之PCDD/Fs生成特性 13
2.2.1 熱處理程序之PCDD/Fs生成特性 13
2.2.2 台南中石化安順污染場址及戴奧辛生成途徑 15
2.2.3 越南戴奧辛污染事件 17
2.3 固體物中PCDD/Fs去除技術 18
2.3.1 溶劑抽出處理法 18
2.3.2 濕式氧化游離法 21
2.3.3 金屬鈉脫鹵化技術 21
2.4 以熱處理技術去除有害固體物中之PCDD/Fs 24
2.4.1 玻璃化處理法 24
2.4.2 熱脫附處理法 25
2.4.3 戴奧辛於裂解系統中的破壞與生成 29
2.4.4 熱裂解技術的應用 37
第三章 研究方法 41
3.1 研究流程 41
3.2 飛灰與土壤樣品的採集與分類 43
3.2.1 都市廢棄物焚化之ACI+BF集塵灰之採集與預處理 43
3.2.2 受PCDD/Fs污染之土壤採集與預處理 43
3.3 降解試驗系統 44
3.3.1 實驗室批次熱裂解系統 44
3.3.2 連續熱裂解系統 45
3.3.3 連續熱裂解系統之空氣污染防制流程 46
3.4 戴奧辛樣品、採樣、淨化與分析 47
3.4.1 氣流戴奧辛採樣 47
3.4.2 戴奧辛樣品回收程序 47
3.4.3 固體基質中戴奧辛樣品萃取及淨化程序 51
3.4.4 HRGC/HRMS分析 51
3.5 其它檢測方法簡述 53
3.5.1 元素分析儀 53
3.5.2 含水率(Moisture content) 54
3.5.3 氯鹽(Chloride) 54
3.5.4 硫酸鹽(Sulfate) 54
3.5.5 pH值 54
3.5.6 重金屬含量 54
3.5.7 陽離子交換容量(Cation exchange capacity,CEC) 55
3.6 研究相關計算公式 55
第四章 結果與討論 57
4.1 焚化集塵灰及污染土壤特性分析 57
4.1.1 都市廢棄物焚化集塵灰 57
4.1.2 含高濃度PCDD/Fs之污染土壤 60
4.1.3 集塵灰及污染土壤PCDD/Fs特性比較 62
4.2 實驗室熱裂解試驗 63
4.2.1 ACI+BF集塵灰之PCDD/Fs熱降解特性 64
4.2.2 添加鈣系鹼劑對ACI+BF集塵灰之PCDD/Fs熱降解效果 69
4.2.3 污染土壤之PCDD/Fs熱裂解特性 70
4.2.4 集塵灰及污染土壤中PCDD/Fs熱裂解技術去除特性比較 74
4.3 連續熱裂解試驗 77
4.3.1 應用連續熱裂解系統處理含PCDD/Fs之集塵灰 77
4.3.2 應用連續熱裂解系統處理含PCDD/Fs之污染土壤 81
4.3.3 PCDD/Fs去除特性與可行操作參數 87
4.4 空氣污染防制程序 89
4.4.1 防制設備之選擇與思維 90
4.4.2 防制設備操作參數及污染物去除特性 92
第五章 結論與建議 95
5.1 結論 95
5.2 建議 97
參考文獻 99



圖目錄
圖2-1 典型戴奧辛之結構式 5
圖2-2 大型MWI原始飛灰檢測濃度 9
圖2-3 日本早期含氯農藥之主要成份 13
圖2-4 PCDDs及PCDFs之主要形成路徑 15
圖2-5 PCP製程戴奧辛生成途徑 16
圖2-6 24-D及245-T結構示意圖 18
圖2-7 溶劑抽出處理流程 20
圖2-8 濕式氧化游離法處理流程 22
圖2-9 金屬鈉脫鹵化技術處理流程 23
圖2-10 BCD處理技術流程 24
圖2-11 高溫玻璃化系統 25
圖2-12 離地高溫玻璃化系統處理程序 25
圖2-13 熱脫附流程示意圖 26
圖2-14 實廠旋轉窯熱脫附模組示意圖 26
圖2-15 間接熱脫附技術(TSP)結合熔融固化之處理流程 28
圖2-16 間接熱脫附結合水蒸氣分解之處理流程 29
圖2-17 ISTD技術之適用污染物及實場整治之土壤溫度分佈 30
圖2-18 IPTD的設置與原理 31
圖2-19 ISTD整治流程 31
圖2-20 2-Chlorophenol之戴奧辛類化合物產物 33
圖2-21 2-Chlorophenol之苯環類產物 35
圖2-22 焦油濃縮示意圖 36
圖2-23 飛灰連續熱裂解處理系統 38
圖2-24 飛灰連續熱裂解反應器和淬冷設備之結構 38
圖2-25 熱解反應對集塵灰戴奧辛去除效率與操作溫度之關係 39
圖2-26 還原加熱法與金屬鈉分散體法搭配之處理流程 39
圖2-27 TATT工法之處理流程流程 40
圖2-28 MOTSOC工法之處理流程流程 40
圖3-1 研究流程 42
圖3-2 批次熱裂解系統 45
圖3-3 連續熱裂解系統流程圖 46
圖3-4 連續熱裂解系統之空氣污染防制流程 47
圖3-5 排氣戴奧辛採樣系統配置 48
圖3-6 排氣戴奧辛樣品回收流程 49
圖3-7 高解析氣相層析質譜儀(Thermo Trace GC / Thermo DFS) 53
圖4-1 都市廢棄物ACI+BF集塵灰之戴奧辛濃度分佈 60
圖4-2 污染土壤PCDD/Fs物種分佈 63
圖4-3 集塵灰PCDD/Fs之去除效率 65
圖4-4 添加鈣系鹼劑對焚化集塵灰中PCDD/Fs熱裂解之影響 71
圖4-5 污染土壤中PCDD/Fs批次熱裂解試驗結果 72
圖4-6 集塵灰及污染土壤中PCDD/Fs物種之批次熱裂解試驗結果 77
圖4-7 集塵灰於不同停留時間下之 PCDD/Fs 毒性去除效率 79
圖4-8 集塵灰中PCDD/Fs隨集塵灰及載流氣體排出之流率分佈 80
圖4-9 處理後之集塵灰PCDD/Fs物種分佈 80
圖4-10 集塵灰PCDD/Fs去除效率 81
圖4-11 污染土壤中PCDD/Fs連續處理試驗結果 82
圖4-12 不同溫度下之PCDD/Fs氣固相殘留率 83
圖4-13 不同溫度下之2,3,7,8-TCDD氣固相殘留率 86
圖4-14 實驗室批次試驗及連續熱裂解試驗對土壤中PCDD/Fs之破壞效率 87
圖4-15 防制設備對污染物之去除效率 94
圖4-16 驟冷塔排出水及液態元素汞 94



表目錄
表2-1 PCDDs的物化性質 6
表2-2 PCDD/Fs毒性當量係數 7
表2-3 不同文獻及程序之飛灰中戴奧辛濃度比較 10
表2-4 MSWIs灰渣之戴奧辛含量 11
表2-5 越南污染場址調查結果與現況 19
表2-6 運用IPTD 處理Da Nang機場底泥及土壤之成果 32
表4-1 都市廢棄物焚化爐之ACI+BF集塵灰基本性質 58
表4-2 都市廢棄物焚化爐之ACI+BF集塵灰化學組成 58
表4-3 受PCDD/Fs污染土壤之基本性質分析 62
表4-4 集塵灰PCDD/Fs熱裂解操作參數列表 65
表4-5 不同熱裂解參數對集塵灰中PCDD/Fs破壞效率 67
表4-6 污染土壤批次熱裂解操作參數 71
表4-7 不同熱裂解參數對污染土壤Soil-L之PCDD/Fs破壞效率 73
表4-8 不同操作溫度下PCDD/Fs之質量與毒性破壞效率 74
表4-9 連續熱裂解系統去除集塵灰中PCDD/Fs之測試參數 78
表4-10 不同停留時間處理後之PCDD/Fs毒性濃度 79
表4-11 連續熱裂解系統處理含PCDD/Fs污染土壤之測試參數 82
表4-12 不同操作溫度下PCDD/Fs各物種殘留率 85
表4-13 經不同操作參數處理後之土壤及排氣PCDD/Fs毒性濃度 86
表4-14 可行操作參數列表 89
表4-15 連續熱裂解系統排氣特性 90
表4-16 空氣污染防制設備操作條件 92
參考文獻 Addink, R., Olie, K., “Role of Oxygen in Formation of Polychlorinated Dibenzo-p-dioxins/Dibenzofurans from Carbon on Fly Ash”, Environmental Science & Technology, Vol. 29, pp. 1586-1590 (1995)
Addink, R., Paulus, R., Olie, K., “Prevention of PCDD/F Formation on Municipal Waste Incinerator Fly Ash Using Nitrogen and Sulfur Compounds”, Environmental Science & Technology, Vol. 30, pp. 2350-2354 (1996).
Ahn, W., Sheeley, S.A., Rajh, T., Cropek, D.M., “Photocatalytic Reduction of 4-nitrophenol with Arginine-modified Titanium Dioxide Nanoparticles”, Applied catalysis B – Environmental, Vol. 74, pp. 103-110 (2007).
Ballschmiter, K., Zoller, W., Scholtz, C., Nottrodt, A., “Destruction of PCDD and PCDF in Bleached Pulp by Chlorine Dioxide Treatment”, Chemosphere, Vol. 12, pp. 585-597 (1983).
Bölsing, F., “In Remediation Engineerg of Contaminated Soil”, Mercel Dekker Inc., (2000).
Brubaker, W.W., Hites, R.A., “Polychlorinated Dibenzo-p-dioxins and Dibenzofurans: Gas-phase Hydroxy Radical Reactions and Related Atmospheric Remvoal”, Environmental Science & Technology, Vol. 31, pp. 1805-1810 (1997).
Brusseau, M.L., Wang, X., Hu, Q., “Enhanced Transport of Low-polarity Organic Compounds through Soil by Cyclodextrin”, Environmental Science & Technology, Vol. 28, pp. 952-956 (1994).
Chang, M.B., Lin, J.J., “Memory Effect on the Dioxin Emissions from Municipal Waste Incinerator in Taiwan”, Chemosphere, Vol. 45, pp. 1151-1157 (2001).
Chen, T., Yan, J.H., Lu, S.Y., Li, X.d., Gu, Y.L., Dai, H.F., Ni, M.J., Cen, K.F., “Characteristic of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Fly Ash from Incinerators in China”, Journal of Hazardous Materials, Vol. 150, pp. 510-514 (2008).
Chi, K.H., Chang, M.B., Chang-Chien, G.P., Lin, C., “Characteristics of PCDD/F Congener Distributions in Gas/Particulate Phases and Emissions from Two Municipal Solid Waste Incinerators in Taiwan”, Science of the Total Environment, Vol. 347, pp. 148-162 (2005).
Cieplik, M.K., Epema, O.J, Louw, R., “Thermal Hydrogenolysis of Dibenzo-p-dioxin and Dibenzofuran”, Eurpean Journal of Organic Chemistry, pp. 2792-2799 (2002).
CMPS&F, “Appropriate Technologies for the Treatment of Scheduled Wastes, Review”, Report Number 4 (1997).
Collina, E., Lasagni, M. and Pitea, D., “Degradation of Octachlorodibenzofuran and Octachlorodibenzo-p-dioxin Spiked on Fly Ash: Kinetics and Mechanism”, Environmental Science & Technology, Vol. 29, pp. 577-585 (1995).
Crosby, D.G., Wong, A.S., Plimmer, J.R., Woolson, E.A., “Photodecomposition of Chlorinated Dibenzo-p-dioxins”, Science, Vol. 173, pp. 748-749 (1971).
Dickson, L.C., Lenoir, D., Hutzinger, O., “Surface-catalyzed Formation of Chlorinated Dibenzodioxins and Dibenzofurans during Incineration”, Chemosphere, Vol. 19, pp. 277-282 (1989).
Dwernychuk, L.W., Cau, H.D., Hatfield, C.T., Boivin, T.G., Hung, T.M., Dung, P.T., Thai, N.D., “Dioxin Reservoirs in Southern Viet Nam-A Legacy of Agent Orange”, Chemosphere, Vol 47, pp. 117-137 (2002).
Dwyer, J.H., Flesh-Janys, D., “Editorial: Agent Orange in Vietnam”, American Journal of Public Health, Vol. 85, pp. 476-478 (1995).
EPA REACH IT, “SepraDyne Corporation - Vacuum Desorption”, http://www.epareachit.org (2006).
Evans, C.S., Dellinger, B., “Mechanisms of Dioxin Formation from the High-Temperature Pyrolysis of 2-Chlorophenol”, Environmental Science and Technology, Vol. 37, pp. 1325-1330 (2003)
Evans, C.S., Dellinger, B., “Mechanisms of Dioxin Formation from the High-Temperature Oxidation of 2-Chlorophenol”, Environmental Science and Technology, Vol. 39 pp. 122-127 (2005).
Everaert, K., Baeyens, J., “The Formation and Emission of Dioxins in Large Scale Thermal Processes”, Chemosphere, Vol. 46, pp. 439-448 (2002).
Firestone, D., “Etiology of Chick Edema Disease”, Environ. Health Perspect., Vol. 5, pp. 59-66 (1973).
Friesel, P., Sievers, S., Fiedler, H., Gras, B., Lau, C., Reich, T., Rippen, G., Schacht, U., Fahrenholt, F., “Dioxin Mass Balance for the City of Hamburg, Germany. Part 4: Follow up Study – Trends of PCDD/F Fluxes”, Organohalogen Compounds, Vol. 28, pp. 89-94 (1996).
FRTR, “Guide to Documenting and Managing Cost and Performance Information for Remediation Projects”, (1998).
FRTR, “Soil Washing. Federal Remediation Technologies Reference Guide and Screening, Manual”, http://www.frtr.gov/matrix2/section4/4-19.html (2001).
Fueno, H., Tanaka, K., Sugawa, S., “Theoretical Study of the Dechlorination Reaction Pathways of Octachlorodibenzo-p-dioxin”, Chemosphere, Vol. 48, pp. 771-778 (2002).
Giugliano, M., Cernuschi, S., Grosso, M., Aloigi, E., Miglio, R., “The Flux and Mass Balance of PCDD/F in a MSW Incineration Full Scale Plant”, Chemosphere, Vol. 43, pp. 743-750 (2001).
Greiner B., Stelzner E., “Abschlussbericht zum F+E-Vorhaben: Koordinierung, Erfassung und Auswertung von Dioxinmessungen an Abfallverbrennungsanlagen (Co-ordination, compilation and evaluation of dioxin tests in MSW-Incinerators). In: Argus an der TU Berlin”, Förderkennzeichen, 146 05 39/1Umweltbundesamt. Berlin (1991).
Hagenmaier, H., Jraft, M., Brunner, H., Haag, R., “Catalytic Effect of Fly Ash from Waste Incineration Facilities on the Formation and Decomposition of Polychlorinated Dibenzo-p-dioxions and Polychlorinated Dibenzofurans”, Environmental Science & Technology, Vol. 21, pp. 1080-1084 (1987).
Hang, N.M., Saito, M., Son, L.K., “Technology Selection – Principles and Progress – For Dioxin Hotspot Remediation in Vietnam”, Organohalogen Compounds, Vol. 75, pp. 654-657 (2013).
Heron G., Baker, R.S., Galligan, J.P., Tawara, K., Braatz, H., “In-pile Thermal Desorption for Treatment of Dioxin-contaminated Soil in Japan”, Proceedings of the Seventh International Conference on Remediation of Chlorinated and Recalcitrant Compounds (2010).
HHS (United States Department of Health and Human Services), “Toxicological Profile for Chlorinated Dibenzo-p-dioxins” (1998)
Hong, P.K.A., Zeng, Y., “Degradation of Pentachlorophenol by Ozonation and Biodegradability of Intermediates”, Water Research, Vol. 36, pp. 4243-4254 (2002).
Hung, P.C., Chang, S.H., Lin, S.H., Buekens, A., Chang, M.B., “Pilot Tests on the Catalytic Filtration of Dioxins”, Environmental Science & Technology, Vol. 48, pp. 3995-4001 (2014).
Hung, P.C., Chen, Q.H., Chang, M.B., “Pyrolysis of MWI Fly Ash – Effect on Dioxin-like Congeners”, Chemosphere, Vol. 92, pp. 857-863 (2013).
Hung, P.C., Chi, K.H., Chen, M.L., Chang, M.B., “Characteristics of Dioxin Emissions from a Waelz Plant with Acid and Basic Kiln Mode”, Journal of Hazardous Materials, Vol. 201-202, pp. 229-235 (2012).
Hung, P.C., Lo, W.C., Chi, K.H., Chang, S.H., Chang, M.B., “Reduction of Dioxin Emission by a Multi-layer Reactor with Bead-shaped Activated Carbon in Simulated Gas Stream and Real Flue Gas of a Sinter Plant”, Chemosphere, Vol. 82, pp. 72-77 (2011).
Idris, A., Saed, K., “Characteristics of Slag Produced from Incinerated Hospital Waste”, Journal of Hazardous Materials, Vol. 93, pp. 201-208 (2002).
IOM (Institute of Medicine), “Veterans and Agent Orange: Updata 2004”, National Academy Press, Washington, D.C., pp. 118 (2005).
Ishida M., Shiji R., Nie P., Nakamura N. “Full-scale Plant Studyon Low Temperature Thermal Dechlorination of PCDDs/PCDFs in Fly Ash”, Chemosphere, Vol. 37, pp. 2299-2308 (1998).
Isosaari, P., Tuhkanen, T., Vartiainen T., “Use of Olive Oil for Soil Extraction and Ultraviolet Degradation of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans”, Environmental Science & Technology, Vol. 35, pp. 1259-1265 (2001).
Joung, H.T., Seo, Y.C., Kim, K.H., “Distribution of Dioxins, Furans, and Dioxin-like PCBs in Solid Products Generated by Pyrolysis and Melting of Automobile Shredder Residues”, Chemosphere, Vol. 68, pp. 1636-1641 (2007).
Joung, H.T., Seo, Y.C., Kim, K.H., Seo, Y.C., “Effects of Oxygen, Catalyst and PVC on the Formation of PCDDs, PCDFs and Dioxin-like PCBs in Pyrolysis Products of Automobile Residues”, Chemosphere, Vol. 65, pp. 1481-1489 (2006).
Kettrup, A., Wunsch, P., Nüßlein, F., “Einfluß der Brennbetttemperatur auf den Dioxingehalt von Produkten der Müllverbrennung”, BayFORREST Berichtsheft, Vol. 2, pp. 23 (1994).
Khodadoust, A.P., Bagchi, R., Suidan, T.M., Brenner, C.R., Sellers, G.N., “Removal of PAHs from Highly Contaminated Soils Found at Prior Manufactured Gas Operations”, Journal of Hazardous Materials, Vol. 80, pp. 159-174 (2000).
Khodadoust, A.P., Reddy, K.R., Maturi, K., “Effect of Different Extraction Agents on Metal and Organic Contaminant Removal from a Field Soil”, Journal of Hazardous Materials, Vol. 117, pp. 15-24 (2005).
Kim, M.K., O’Keefe, P.W., “Photodegradation of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Aqueous Solutions and in Organic Solvents”, Chemosphere, Vol. 41, pp. 793-800 (2000).
Kim, S.C., Jeon, S.H., Jung, I.R., Kim, K.H., Kwon, M.H., Kim, J.H., Yi, J.H., Kim, S.J., You, J.C., Jung, D.H., “Removal Efficiencies of PCDDs/PCDFs by Air Pollution Control Devices in Municipal Solid Waste Incinerators”, Chemosphere, Vol. 43, pp. 773-776 (2001).
Klicius, R., Finkelstein, A., “The National Incinerator Testing and Evaluation Program: Environmental Characterization of Mass Burning Incinerator Technology at Quebec City”, Environment Canada Report, EPS 3/UP/5, Environment Canada, Ottawa, Ontario, Canada (1988).
Knörr, W., Hentschel, B., Marb, C., Schädel, S., Swerov, M., Vierle, O., Lay, J.P., Rückstände aus der Müllverbrennung. Erich Schmidt Verlag, Berlin (1999).
Luijk, R., Dorland, C., Kapteijn, F., Govers, H.A.J., “The Formation of PCDDs and PCDFs in the Catalyzed Combustion of Carbon: Implications for Coal Combustion”, Fuel, Vol. 7, pp. 343-347 (1993).
Luijk, R., Akkerman, D.M., Slot, P., Olie, K., “Mechanism of Formation of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in the Catalyzed Combustion of Carbon”, Environmental Science & Technology, Vol. 28, pp. 312-321 (1994).
Lundin, L., Marklund, S., “Thermal Degradation of PCDD/F in Municipal Solid Waste Ashes in Sealed Glass Ampules”, Environmental Science & Technology, Vol. 39, pp. 3872-3877 (2005).
Mackay, D., Shiu, W.Y., Ma, K.C., “Illustrated Handbook of Physical-chemical Properties and Environmental Fate for Organic chemicals: Polynuclear Aromatic Hydrocarbons, Polychlorinated Dioxins, and Dibenzofurans”, Chelsea, MI: Lewis Publishers (1992).
Maniatis, K., Beenackers, A.A.C.M., “Tar Protocols. IEA Bioenergy Gasification Task”, Biomass and Bioenergy, Vol. 18, pp. 1-4 (2000).
Marquaire, P., Worner, R., Rambaud, P., Baronnet, F., “High Temperature Oxidation of Dioxins”, Organohalogen Compounds, Vol. 40, pp. 419–422 (1999).
Masunaga, S., Sakurai, T., Ogura, I., Nakanishi, J., “Mass Balance of Dioxins in Tokyo Bay and Kasumigaura Lake Basin in Japan”, Organohalogen Compounds, Vol.39, pp.81-84 (1998).
Masunaga, S., Takasuga, T., Nakanishi, J., “Dioxin and Dioxin-like PCB Impurities in Some Japanese Agrochemical Formulations”, Chemosphere, Vol. 44, pp. 843-885 (2000).
McKay, G., “Dioxin Characterisation, Formation and Minimisation during Municipal Solid Waste (MSW) Incineration: Review”, Chemical Engineering Journal, Vol. 86, pp. 343-368 (2002).
McNeill, I.C., Memetea, L., Mohammed, M.H., Fernandes, A.R., Ambidge, P., “Polychlorinated Dibenzodioxins and Dibenzofurans in PVC Pyrolysis”, Polymer Degradation and Stability, Vol. 62, pp. 145-155 (1998).
Milligan, M.S., Altwicker, E., “Formation of Dioxins: Competing Rates between Chemical Similar Precursors and De Novo Reaction”, Environmental Science & Technology, Vol. 27, pp. 1595-1601 (1993).
Milne, T.A., Evans, R.J., Abatzoglou, N., “Biomass Gasifier “Tars”: Their Nature, Formation, and Conversion”, NREL/TP-570-25357 (1998).
Misaka, Y., Yamanaka, K., Takeuchi, K., Sawabe, K., Shobatake, K., “Removal of PCDDs/DFs and Dl-PCBs in MWI Fly Ash by Heating under Vacuum”, Chemosphere, Vol. 64, pp. 619-627 (2006).
Nagano, S., Tamon, H., Adzumi, T., Nakagawa, K., Suzuki, T., “Activated Carbon from Municipal Waste”, Carbon, Vol. 38, No. 6, pp. 915-920 (2000).
Nakashima, T., Takamatsu, J., Inoue, M., Matsuike, T., Koyama, T., Matsuo, T., “Remediation Project Report of Dioxins Contaminated Soil in Nose Town, Osaka Japan”, Organohalogen Compounds, Vol 69, pp. 869-872 (2007).
Nema, S.K., Ganeshprasad, K.S., “Plasma Pyrolysis of Medical Waste”, Curren Science, Vol. 83, pp. 271-278.
Ohsaki, Y., Matsueda, T., Ohno, K., “Levels and Source of Non-ortho Coplanar Polychlorinated Biphenyls, Polychlorinated Dibenzo-p-dioxins and Polychlorinated Dibenzofurans in Pond Sediments and Paddy Field Soil”, Water Research, Vol. 29, pp. 1379-1385 (1994).
Ohura, T., Morita, M., Makino, M., Amagai, T., Shimoi, K., “Aryl Hydrocarbon Receptor-mediated Effects of Chlorinated Polycyclic Aromatic Hydrocarbons”, Chemical Research in Toxicology, Vol. 20, pp. 1237-1241 (2007).
Ok, G., Hanai, Y., Katou, T., “Dechlorination Techniques of PCDDs and PCDFs in Fly Ash from Municipal Refuse Incineration Plants-continuous Dechlorination Techniques by Screw Conveyer (1)”, Chemosphere, Vol. 23, pp. 1287-1294 (1991).
Olie, K., Vermeulen, P.L., Hutzinger, O., “Chlorodibenzo-p-dioxins and Chlorodibenzofurans are Trace Components of Fly Ash and Flue Gas of Some Municipal Incinerators in the Netherlands”, Chemosphere, Vol. 6, pp. 455-459 (1977).
Paustenbach, D.J., Wenning, R.J., Lau, V., Harrington, N.W., Rennix, D.K., Parsons, A.H., “Recent Developments on the Hazards Posed by 2,3,7,8-tetrachlorodibenzo-p-dioxin in Soil: Implications for Setting Risk-Based Cleanup Levels at Residential and Industrial Sites”, Journal of Toxicology and Environmental Health, Vol. 36, pp. 103-150 (1992).
Reeck, G., Schröder, W., Schetter G., “Zukunftsorientierte Abfallverbrennung in der MVA Ludwigshafen”, Müll und Abfall, Vol. 23, pp. 661-673 (1991).
Sato, T., Todoroki, T., Shimoda, K., Terada, A., Hosomi, M., “Behavior of PCDDs/PCDFs in Remediation of PCBs-contaminated Sediments by Thermal Desorption”, Chemosphere, Vol. 80, pp. 184-189 (2010).
Schetter, G., Horch, K., Stuetzle, R., Brunner, H., Hagenmaier, H., “Low Temperature Thermal Treatment of Filter Ash from Municipal Waste Incinerators for Dioxin Decomposition on a Technical Scale”, Organohalogen Compounds, Vol. 3, pp. 165-168 (1990).
Schuler, F., Schmid, P., Schlatter, C., “Photodegradation of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Cuticular Waxes of Laurel Cherry (prunus laurocerasus)”, Chemosphere, Vol. 36, pp. 21-34 (1998).
Schwetz, B.A., Norris, J.M., Sparschu, G.L., Rowe, V.K., Gehring, P.J., Emerson, J.L., Gerbig, C.G., “Toxicology of Chlorinated Dibenzo-p-dioxins”, Advances in Chemistry, Vol. 120, pp. 55-69 (1973).
Shibata, E., Yamamoto, S., Kasai, E., Nakamura, T., “Formation Behavior of PCDD/Fs in PVC Pyrolysis with Copper Oxide”, Chemosphere, Vol. 50, pp. 1235-1242 (2003).
Skodras, G., Diamantopoulou, Ir., Pantoleontos, G., Sakellaropoulos,G.P., “Kinetic Studies of Elemental Mercury Adsorption in Activated Carbon Fixed Bed Reactor”, Journal of Hazardous Materials, Vol. 158, pp. 1-13 (2008).
Song, G.J., Kim, S.H., Seo, Y.C., Kim, S.C., “Dechlorination and Destruction of PCDDs/PCDFs in Fly Ashes from Municipal Solid Waste Incinerators by Low Temperature Thermal Treatment”, Chemosphere, Vol. 71, pp. 248-257 (2008).
Sorenson, K.S., Chichakli, R.E., Chenevey, P.M., Montera, J.G., Diep, T.M., McNamee, P.J., Boivin, T.G., Baker, R.S., Donovan, F., Handler, H., “Technology Selection and Conceptual Design for Cleanup of Dioxin Contamination at the Danang Airport Hot Spot”, VIETNAM (2011).
Stieglitz, L., Vogg, H., “On Formation Conditions of PCDD/PCDF in Fly Ash from Municipal Waste Incinerators”, Chemosphere, Vol. 16, pp. 1917-1922 (1987).
Stone, R., “Agent Orange’s Bitter Harvest”, Science, Vol. 315, pp. 176-179 (2007).
Takasuka, G., Itaya, M., Kojima, S., “Thermal Decomposition of PCDDs/PCDFs in MSW Incineration Fly Ash”, Organohalogen Compounds, Vol. 19, pp. 491-494 (1994).
Tame, N.W., Dlugogorski, B.Z., Kennedy, E.M., “Conversion of Wood Pyrolysates to PCDD/F”, Proceedings of the Combustion Institute, Vol. 32, pp. 665-671 (2009).
Taniguchi, S., Hoaomi, M., Murakami, A., Iimura, S., Usukura, K., Ozawa, S., “Chemical Decomposition of Toxic Organic Chlorine Compounds”, Chemosphere, Vol. 32, pp. 199-202 (1996).
Tendler, M., Rutberg, P., van Oost, G., “Plasma ased Waste Treatment and Energy Production”, Plasmaphysics and Controlled Fusion, Vol. 47, pp. A219-A230 (2005).
Tuppurainen, K., Asikainan, A., Ruokojarvi, P., Ruuakanen, J., “Perspectives on the Formation of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans during Municipal Solid Waste Incineration and Other Combustion Processes”, Accounts Chemical Research, Vol. 36, pp. 652-658 (2003).
UNEP, “Review of the Emerging, Innovative Technologies for the Destruction and Decontamination of POPs and the Identification of Promising Technologies for Use in Developing Countries”, (2004).
USEPA, “Cost and Performance Summary Report: Thermal Desorption at the Lipari Landfill”, Operable Unit 3, Pitman, New Jersey, (2002).
USEPA, “Engineering Forum Issue Paper: Thermal Desorption Implementation Issues”, EPA-540-F-95-031 (1997a).
USEPA, “Health Assessment Document for 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and Related Compounds”, EPA/600/Bp-92/001c Estimating Exposure to Dioxin-like Compounds, EPA/600/6-88/005Cb, Office of Research and Development, Washington, DC (1994).
USEPA, “Minergy Corporation Glass Furnace Technology Evaluation Report”, EPA/540/R-03/500 (2004).
USEPA, “Technology Alternatives for the Remediation of Soils Contaminated with Arsenic, Cadmium, Chromium, Mercury, and Lead”, Office of Research and Development, Engineering Bulletin, EPA-540-S-97-500 (1997b).
U.S. Department of Energy, “Innovative Technology Summary Report: Plasma Hearth Process at the Science and Technology Research (STAR) Center, Idaho Falls, Idaho” (1998).
van den Berg, M., Birnbaum, L.S., Denison, M., Vito, M.D., Farland, W., Feeley, M., Fiedler., H., Hakansson, H., Hanberg, A., Haws, L., Rose, M., Safe, S., Schrenk, D., Tohyama, C., Tritscher, A., Tuomisto, J., Tysklind, M., Walker, N., Peterson, R.E., “The 2005 World Health Organization Re-evaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds”, ToxSci Advance Access, pp. 52 (2006).
Vehlow, J., Bergfeldt, B., Hunsinger, H., “PCDD/F and Related Compounds in Solid Residues from Municipal Solid Waste Incineration - A Literature Review”, Waste Management and Research, Vol. 24, pp. 404-420 (2006).
Vogg, H., Stieglitz, L., “Thermal Behavior of PCDD/PCDF in Fly Ash from Municipal Incinerators”, Chemosphere, Vol. 15, pp. 1373–1378 (1986).
Washburn, C., Hill, E., “Mercury Retorts for the Processing of Precious Metals and Hazardous Wastes”, Journal of the Minerals, Vol. 55, pp. 45-50 (2003).
Wang, M.C., Chen, H.M., “Forms and Distribution of Selenium at Different Depths and Among Particle Size Fractions of Three Taiwan Soils”, Chemosphere, Vol. 52, pp. 585-593 (2003).
Weber, R., Gaus, C., Tysklind, M., Johnston, P., Forter, M., Hollert, H., Heinisch, E., Holoubek, I., Lloyd-Smith, M., Masunaga, S., Moccarelli, P., Santillo, D., Seike, N., Symons, R., Torres, J.P.M., Verta, M., Varbelow, G., Vijgen, J., Watson, A., Costner, P., Woelz, J., Wycisk, P., Zennegg, M., “Dioxin- and POP-contaminated Sites – Contemporary and Future Relevance and Challenges”, Environmental Science and Pollution Research, Vol. 15, pp. 363-393 (2008).
Weber, R., Sakurai, T., “Formation Characteristics of PCDD and PCDF during Pyrolysis Processes”, Chemosphere, Vol. 45, pp. 1111-1117 (2001).
Weber, R., Sakurai, T., Hagenmaier, H., “Formation and Destruction of PCDD/PCDF during Heat Treatment of Fly Ash Samples from Fluidized Bed Incinerators”, Chemosphere, Vol. 38, pp. 2633-2642 (1999a).
Weber, R., Sakurai, T., Hagenmaier, H., “Low Temperature Decomposition of PCDD/PCDF, Chlorobenzenes and PAHs by TiO2-based V2O5-WO3 Catalysts”, Applied Catalysis B – Environmental, Vol. 20 249-256 (1999b).
WHO, “PCBs, PCDDs and PCDFs: Prevention and Control of Accidental and Environmental Exposures”, Environmental Health Series, Vol. 32 (1987).
Wu, C.H., Chang-Chien, G.P., Lee, W.S., “Photodegradation of Tetra- and Hexachlorodibenzo-p-dioxins”, Journal of Hazardous Materials, Vol. 120, pp. 257-263 (2005).
Wu, C.H., Ng, H.Y., “Photodegradation of Polychlorinated Dibenzo-p-dioxins and Polychlorinated Dibenzofurans: Direct Photolysis and Photocatalysis Processes”, Journal of Hazardous Materials, Vol. 151, pp. 507-514 (2008).
Yamada, S., Kishita, S., Nakai, S., Takada, M., Hosomi, M., “Photodechlorination of Octachlorodibenzothiophene and Octachlorodibenzofuran: Comparison of Experimental Degradation Pathways with Degradation Pathways Predicted by DFT”, Chemosphere, Vol. 73, pp. 1005-1010 (2008).
Yeom, I.T., Ghosh, M.M., Cox, C.D., “Kinetic Aspects of Surfactant Solubilization of Soil-Bound Polycyclic Aromatic Hydrocarbons”, Environmental Science & Technology, Vol. 30, pp. 1589-1595 (1996).
Young, A.L., “The History, Use, Disposition and Environmental Fate of Agent Orange”, Springer, New York (2009).
日本東京都環境局,「大田ダイオキシン—関連プレス発表と土壌浄化事業」,2006。
日本環境省,「平成15年度ダイオキシン類汚染土壌浄化技術実証調査」,2003。
日本環境省,「平成17年度低コスト・低負荷型土壌汚染調査対策技術検討調査及びダイオキシン類汚染土壌浄化技術等確立調査」,2007。
台南市環境保護局,「中石化安順廠污染防治手冊」,http://epb3.tainan.gov.tw/cpdc/ch/default.asp。
古晏菁,「土壤污染整治技術介紹」,工業污染防治報導,第104期,1999。
岡田俊也、井出一貴、福田智之、辻博和,「金属ナトリウムを用いたダイオキシン汚染土壌の無害化」,第9回地下水・土壌汚染とその対策に関する研究集会,pp. 338-339,2003。
栄藤徹、藤田謹也、寺倉誠一、荒井利明、荒岡衛、上島直幸,「土壌浄化技術の開発状況」,三菱重工技報,Vol. 39,2002。
陳信彧,「以批次與動態溶出探討飛灰中重金屬及戴奧辛之溶出特性」,碩士論文,國立中央大學,2012。
国土交通省,「鶴見川多目的遊水地土壌無害化処理技術確認実験」,2006。
張木彬、張書豪、洪保鎮,「去除戴奧辛類化合物的系統及方法」,發明專利,I424877,2014。
張木彬、林錕松、席行正、洪保鎮、江昭龍、周書瑋,「汽電共生設施有害及二氧化碳空氣污染物排放調查及管制策略研究」,環保署/國科會空污防制科研合作計畫,2013。
環保署,「九十二年度一般廢棄物衛生掩埋場滲出水處理廠及監測井功能評估工作計畫」,2003。
環保署,「台南市中石化安順廠整治場址土壤及地下水污染範圍調查及整治工作建議計畫公告污染管制區外查證報告」,EPA-93-GA12-03-A203,2004。
環保署,「國內有害空氣污染物質排放調查及管制策略研擬計畫」,2006。
環保署,「固定污染源戴奧辛、多環芳香烴(PAHs)及重金屬排放調查與管制計畫」,2011。
環保署,「101 年事業廢棄物管理-辦理電弧爐煉鋼業及鋁熔煉業之事業廢棄物清理查核專案計畫」,2012。
黃煥彰,「失落的記憶~台鹼安順廠」,看守台灣,第4卷,第2期,第80-88頁,2002。
指導教授 張木彬(Moo-Been Chang) 審核日期 2014-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明