博碩士論文 100326019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.190.152.38
姓名 齊慕凡(Mu-fan Chi)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討
(Investigation of the correlation between dispersivity and microbial toxicity of multi-walled carbon nanotubes in aquesous phase)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
★ 零價鐵與硫酸鹽的添加對於水田根圈環境汞 之生物有效性與菌相組成的影響★ 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究
★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例
★ 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例
★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢
★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例
★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析★ 吸附汞之三價鐵礦於生物還原溶解過程中元素汞的生成與移動潛勢
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 奈米科技由於可廣泛應用於各個領域,已被視為是二十一世紀最重要的新興科技之一。然而,近年來奈米材料的大量製造與利用逐漸使得這些奈米顆粒進入環境中的機率大增;不僅如此,這些奈米材料所具有的獨特高比表面積使其被歸類為高反應性和高物化動態的材料,易於環境和生物系統中發生許多轉化,特別是與自然界存在之天然有機物或人為有機污染物之間的吸附反應,而這些轉化作用終將改變奈米材料的宿命、傳輸以及毒性作用,因此實有必要在這些材料的生產製造有顯著進展前了解其轉化的性質和程度,以推估其所帶來的環境風險。有鑒於此,為了解具微生物毒性潛力的奈米碳管 (carbon nanotubes, CNTs) 在與常見的有機物質作用後,其物化特性的改變對其所引起的生物毒性的影響為何,本研究透過平板計數、OD600生長曲線、螢光染劑染色以及量測細胞ATP總量等方法,觀察改質前後與吸附有機質前後的多壁奈米碳管 (multiwalled carbon nanotubes, MWCNTs) 對模式生物E. coli所造成之細胞毒性效應(毒性的觀察以細胞致死或生長抑制的程度顯示)。結果顯示在暴露期間為震盪搖晃的條件下,裸露未吸附有機質的原始碳管A-MWCNTs (本身分散性差) 比裸露的改質碳管H-MWCNTs (本身分散性佳) 所造成的E. coli細胞毒性較強,可能是由於H-MWCNTs表面帶含有COO-等帶電官能基,故較A-MWCNTs不容易與菌接觸。此外,腐植酸 (humic acid, HA) 或鄰苯二甲酸二乙酯 (diethyl phthalate, DEP) 吸附於碳管表面所形成的高分子層空間位阻,除了能增加A-MWCNTs於水相中的分散穩定性外,亦能減緩其與E. coli的直接接觸,致使A-MWCNTs的細胞毒性減緩。H-MWCNTs吸附HA後在碳管表面形成之HA高分子層同樣能減輕H-MWCNTs的毒性,但在高濃度DEP溶液中之H-MWCNTs卻增加了碳管的微生物毒性,然其中的原因還無法確定。整體而言,這些結果顯示未改質之碳管在環境中與含苯環的有機物相互作用後,對於水生生態較為友善,但在評估環境風險時也不能忽視H-MWCNTs於較高DEP濃度的溶液中,些微增加微生物毒性此種特殊之現象。
摘要(英) Recent advances in nanotechnology have created numerous and promising applications in all sectors of society, thus making nanotechnology been considered as one of the most important technologies in the 21st century. However, the rapid worldwide development of nanotechnology seems inevitably increase the likelihood of the release of engineered nanomaterials (ENMs) to the environment. As being classified as a highly reactive and dynamic type of materials, ENMs are expected to easily undergo a number of transformations once released to the environment, thereby ultimately influencing the fate, transport and toxicity of these materials in both environmental and biological systems. Given that organic matter (OM) is a key factor controlling the behavior of chemicals in aquatic settings and microbes are the foundation of many ecosystems, probing the “OM-nanomaterial reactions” and consequent effect on microbial toxicity is one step towards understanding the lifetimes of nanomaterials in the environment and their potential toxicity on organisms exposed to them.

In this study, laboratory experiments that incorporated approaches of viable count, growth monitoring (through optical-density measurement), LIVE/DEAD fluorescent staining, as well as total cellular ATP analysis were carried out to investigate the toxic extent of multi-walled carbon nanotubes (MWCNTs) towards the model organism E. coli. Specifically, this study focused on the microbial toxicity comparison of “surface-modified vs. surface-unmodified” and “OM-adsorbed vs. OM-unadsorbed” MWCNTs. Results indicated that over the course of exposure in the absence of OM, agitation led to higher cytotoxicity in unmodified MWCNTs (designated as A-MWCNTs) solution than in modified MWCNTs (designated a H-MWCNTs), probably due to more quantities of charged COO- moieties on the surface of H-MWCNTs that eventually prevented direct contact between E. coli cells and H-MWCNTs. Similarly, although humic acid (HA)- and diethyl phthalate (DEP)-sorption increased the dispersivity of A-MWCNTs, adsorption of these OM on A-MWCNTs minimized the toxicity of A-MWCNTs on E. coli owing to the same steric-obstruction effect. However, such sheltering effects were only observed in the H-MWCNTs solution containing HA as opposed to DEP, because H-MWCNTs equilibrated with higher concentrations of DEP resulted in higher growth inhibition, instead of toxicity mitigation. Explanations for this observation were currently unavailable.

Together, these results suggested that while the interaction of MWCNTs and phenolic OM may not significantly cause a deleterious effect in the aquatic ecosystem, care should be taken when assessing environmental risk arising from exposure of H-MWCNTs in the presence of higher DEP concentrations.
關鍵字(中) ★ 多壁奈米碳管
★ 腐植酸
★ 鄰苯二甲酸二乙酯
★ 空間位阻
★ 分散性
★ 微生物毒性
關鍵字(英) ★ multi-walled carbon nanotubes
★ humic acid
★ diethyl phthalate
★ steric obstructions
★ dispersivity
★ microbial toxicity
論文目次 摘要 I
ABSTRACT III
圖目錄 VII
表目錄 XI
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 奈米材料 4
2.1.1 碳基奈米材料 4
2.1.2 奈米碳管 6
2.2 奈米材料在環境中的轉化 8
2.2.1 化學轉化 9
2.2.2 物理轉化 11
2.2.3 生物行為轉化 12
2.2.4 奈米材料與生物高分子間的交互作用 13
2.3奈米碳管於水相中的吸附及分散行為 15
2.4奈米碳管之微生物毒理機制 17
第三章 實驗方法 20
3.1 多壁奈米碳管改質 20
3.2 多壁奈米碳管儲備液的準備 21
3.3 腐植酸儲備液的準備 22
3.4 鄰苯二甲酸二乙酯儲備液的準備 23
3.5 試驗培養基的成分與配製 24
3.6 實驗用之模式菌種 29
3.7 微生物毒性試驗 30
3.7.1 平板計數法 32
3.7.2 光學密度生長曲線法 32
3.7.3 高通量細菌存活率試驗 33
3.7.4 細胞ATP總量之測定分析 35
3.8 統計分析 38
第四章 結果與討論 39
4.1碳管懸浮穩定性及表面化性對微生物毒性的影響 44
4.1.1吸附不同濃度HA對碳管微生物毒性之影響 44
4.1.2吸附不同濃度DEP對碳管微生物毒性之影響 53
4.2細菌存活率試驗 64
4.3細胞ATP總量分析 77
4.4 環境意義 83
第五章 結論與建議 86
5.1 結論 86
5.2 建議 87
參考文獻 89
參考文獻 1. Ajayan, P. M.,“Nanotubes from Carbon”, Chemical Reviews, Vol. 99, pp. 1787-1800,(1999).
2. Allen, B. L., P. D. Kichambare, P. Gou, Vlasova, II, A. A. Kapralov, N. Konduru, V. E. Kagan, and A. Star,“Biodegradation of single-walled carbon nanotubes through enzymatic catalysis”, Nano Lett, Vol. 8, pp. 3899-903,(2008).
3. Anil Kumar, S., and M. I. Khan,“Heterofunctional Nanomaterials: Fabrication, Properties and Applications in Nanobiotechnology”, Journal of Nanoscience and Nanotechnology, Vol. 10, pp. 4124-4134,(2010).
4. Arias, L. R., and L. Yang,“Inactivation of bacterial pathogens by carbon nanotubes in suspensions”, Langmuir, Vol. 25, pp. 3003-12,(2009).
5. Baalousha, M., P. Le Coustumer, I. Jones, and J. R. Lead,“Characterisation of structural and surface speciation of representative commercially available cerium oxide nanoparticles”, Environmental Chemistry, Vol. 7, p. 377,(2010).
6. Baalousha, M., A. Manciulea, S. Cumberland, K. Kendall, and J. R. Lead,“Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter”, Environ Toxicol Chem, Vol. 27, pp. 1875-82,(2008).
7. Balavoine, F., P. Schultz, C. Richard, V. Mallouh, T. W. Ebbesen, and C. Mioskowski,“Helical Crystallization of Proteins on Carbon Nanotubes: A First Step towards the Development of New Biosensors”, Angewandte Chemie International Edition, Vol. 38, pp. 1912-1915,(1999).
8. Behra, R., L. Sigg, M. J. Clift, F. Herzog, M. Minghetti, B. Johnston, A. Petri-Fink, and B. Rothen-Rutishauser,“Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective”, J R Soc Interface, Vol. 10, p. 20130396,(2013).
9. Caccavo, F., Jr., D. J. Lonergan, D. R. Lovley, M. Davis, J. F. Stolz, and M. J. McInerney,“Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism”, Appl Environ Microbiol, Vol. 60, pp. 3752-9,(1994).
10. Cartwright, C.,“Biodegradation of diethyl phthalate in soil by a novel pathway”, FEMS Microbiology Letters, Vol. 186, pp. 27-34,(2000).
11. Cedervall, T., I. Lynch, S. Lindman, T. Berggard, E. Thulin, H. Nilsson, K. A. Dawson, and S. Linse,“Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles”, Proc Natl Acad Sci U S A, Vol. 104, pp. 2050-5,(2007).
12. Chappell, M. A., A. J. George, K. M. Dontsova, B. E. Porter, C. L. Price, P. Zhou, E. Morikawa, A. J. Kennedy, and J. A. Steevens,“Surfactive stabilization of multi-walled carbon nanotube dispersions with dissolved humic substances”, Environ Pollut, Vol. 157, pp. 1081-7,(2009).
13. Chen, C. Y., and C. T. Jafvert,“The role of surface functionalization in the solar light-induced production of reactive oxygen species by single-walled carbon nanotubes in water”, Carbon, Vol. 49, pp. 5099-5106,(2011).
14. Chen, J.,“Solution Properties of Single-Walled Carbon Nanotubes”, Science, Vol. 282, pp. 95-98,(1998).
15. Chen, J., Z. Xiu, G. V. Lowry, and P. J. Alvarez,“Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron”, Water Res, Vol. 45, pp. 1995-2001,(2011).
16. Chen, K. L., and M. Elimelech,“Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions”, J Colloid Interface Sci, Vol. 309, pp. 126-34,(2007).
17. Chen, Q., C. Saltiel, S. Manickavasagam, L. S. Schadler, R. W. Siegel, and H. Yang,“Aggregation behavior of single-walled carbon nanotubes in dilute aqueous suspension”, J Colloid Interface Sci, Vol. 280, pp. 91-7,(2004).
18. Chen, W., L. Duan, L. Wang, and D. Zhu,“Adsorption of Hydroxyl- and Amino-Substituted Aromatics to Carbon Nanotubes”, Environmental Science & Technology, Vol. 42, pp. 6862-6868,(2008).
19. Chen, W., L. Duan, and D. Zhu,“Adsorption of Polar and Nonpolar Organic Chemicals to Carbon Nanotubes”, Environmental Science & Technology, Vol. 41, pp. 8295-8300,(2007).
20. Cheng, Y. W., L. Y. Yin, S. H. Lin, M. Wiesner, E. Bernhardt, and J. Liu,“Toxicity Reduction of Polymer-Stabilized Silver Nanoparticles by Sunlight”, Journal of Physical Chemistry C, Vol. 115, pp. 4425-4432,(2011).
21. Corredor, C., W.-C. Hou, S. A. Klein, B. Y. Moghadam, M. Goryll, K. Doudrick, P. Westerhoff, and J. D. Posner,“Disruption of model cell membranes by carbon nanotubes”, Carbon, Vol. 60, pp. 67-75,(2013).
22. Cumberland, S. A., and J. R. Lead,“Particle size distributions of silver nanoparticles at environmentally relevant conditions”, J Chromatogr A, Vol. 1216, pp. 9099-105,(2009).
23. Davies, J. C.,“EPA and nanotechnology: oversight for the 21st century.”, Woodrow Wilson International Center for Scholars. Project on Emerging Nanotechnologies,(2007).
24. Deonarine, A., B. L. Lau, G. R. Aiken, J. N. Ryan, and H. Hsu-Kim,“Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles”, Environ Sci Technol, Vol. 45, pp. 3217-23,(2011).
25. Derfus, A. M., W. C. W. Chan, and S. N. Bhatia,“Probing the cytotoxicity of semiconductor quantum dots”, Nano Letters, Vol. 4, pp. 11-18,(2004).
26. Dickson, J. S., and M. Koohmaraie,“Cell surface charge characteristics and their relationship to bacterial attachment to meat surfaces”, Appl Environ Microbiol, Vol. 55, pp. 832-6,(1989).
27. Diegoli, S., A. L. Manciulea, S. Begum, I. P. Jones, J. R. Lead, and J. A. Preece,“Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules”, Sci Total Environ, Vol. 402, pp. 51-61,(2008).
28. Dresselhaus, M. S., and M. Endo,“Relation of carbon nanotubes to other carbon materials”, Carbon Nanotubes, Vol. 80, pp. 11-28,(2001).
29. Fabrega, J., S. R. Fawcett, J. C. Renshaw, and J. R. Lead,“Silver Nanoparticle Impact on Bacterial Growth: Effect of pH, Concentration, and Organic Matter”, Environmental Science & Technology, Vol. 43, pp. 7285-7290,(2009).
30. Falcao, E. H. L., and F. Wudl,“Carbon allotropes: beyond graphite and diamond”, Journal of Chemical Technology and Biotechnology, Vol. 82, pp. 524-531,(2007).
31. Fauconnier, N., J. N. Pons, J. Roger, and A. Bee,“Thiolation of Maghemite Nanoparticles by Dimercaptosuccinic Acid”, Journal of Colloid and Interface Science, Vol. 194, pp. 427-433,(1997).
32. Fortner, J. D., D. Y. Lyon, C. M. Sayes, A. M. Boyd, J. C. Falkner, E. M. Hotze, L. B. Alemany, Y. J. Tao, W. Guo, K. D. Ausman, V. L. Colvin, and J. B. Hughes,“C60 in Water: Nanocrystal Formation and Microbial Response”, Environmental Science & Technology, Vol. 39, pp. 4307-4316,(2005).
33. Fu, K., and Y.-P. Sun,“Dispersion and Solubilization of Carbon Nanotubes”, Journal of Nanoscience and Nanotechnology, Vol. 3, pp. 351-364,(2003).
34. Girifalco, L., M. Hodak, and R. Lee,“Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential”, Physical Review B, Vol. 62, pp. 13104-13110,(2000).
35. Guo, L., D. G. Morris, X. Liu, C. Vaslet, R. H. Hurt, and A. B. Kane,“Iron Bioavailability and Redox Activity in Diverse Carbon Nanotube Samples”, Chemistry of Materials, Vol. 19, pp. 3472-3478,(2007).
36. Hitchman, A., G. H. Smith, Y. Ju-Nam, M. Sterling, and J. R. Lead,“The effect of environmentally relevant conditions on PVP stabilised gold nanoparticles”, Chemosphere, Vol. 90, pp. 410-6,(2013).
37. Hochella, M. F., Jr., S. K. Lower, P. A. Maurice, R. L. Penn, N. Sahai, D. L. Sparks, and B. S. Twining,“Nanominerals, mineral nanoparticles, and Earth systems”, Science, Vol. 319, pp. 1631-5,(2008).
38. Hotze, E. M., J. Y. Bottero, and M. R. Wiesner,“Theoretical framework for nanoparticle reactivity as a function of aggregation state”, Langmuir, Vol. 26, pp. 11170-5,(2010a).
39. Hotze, E. M., T. Phenrat, and G. V. Lowry,“Nanoparticle Aggregation: Challenges to Understanding Transport and Reactivity in the Environment”, Journal of Environment Quality, Vol. 39, p. 1909,(2010b).
40. Hou, W. C., and C. T. Jafvert,“Photochemical transformation of aqueous C60 clusters in sunlight”, Environ Sci Technol, Vol. 43, pp. 362-7,(2009).
41. Hou, W. C., B. Y. Moghadam, C. Corredor, P. Westerhoff, and J. D. Posner,“Distribution of functionalized gold nanoparticles between water and lipid bilayers as model cell membranes”, Environ Sci Technol, Vol. 46, pp. 1869-76,(2012).
42. Hou, W. C., B. Y. Moghadam, P. Westerhoff, and J. D. Posner,“Distribution of fullerene nanomaterials between water and model biological membranes”, Langmuir, Vol. 27, pp. 11899-905,(2011).
43. Hu, Y. H., O. A. Shenderova, and D. W. Brenner,“Carbon nanostructures: Morphologies and properties”, Journal of Computational and Theoretical Nanoscience, Vol. 4, pp. 199-221,(2007).
44. Huang, L., X. Cui, G. Dukovic, and S. P. O Brien,“Self-organizing high-density single-walled carbon nanotube arrays from surfactant suspensions”, Nanotechnology, Vol. 15, pp. 1450-1454,(2004).
45. Hyung, H., J. D. Fortner, J. B. Hughes, and J.-H. Kim,“Natural Organic Matter Stabilizes Carbon Nanotubes in the Aqueous Phase”, Environmental Science & Technology, Vol. 41, pp. 179-184,(2007).
46. Hyung, H., and J. H. Kim,“Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters”, Environ Sci Technol, Vol. 42, pp. 4416-21,(2008).
47. Iijima, S.,“Helical Microtubules of Graphitic Carbon”, Nature, Vol. 354, pp. 56-58,(1991).
48. Islam, M. F., E. Rojas, D. M. Bergey, A. T. Johnson, and A. G. Yodh,“High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water”, Nano Letters, Vol. 3, pp. 269-273,(2003).
49. Jiang, L., L. Gao, and J. Sun,“Production of aqueous colloidal dispersions of carbon nanotubes”, Journal of Colloid and Interface Science, Vol. 260, pp. 89-94,(2003).
50. Kang, S., M. Herzberg, D. F. Rodrigues, and M. Elimelech,“Antibacterial effects of carbon nanotubes: size does matter!”, Langmuir, Vol. 24, pp. 6409-13,(2008a).
51. Kang, S., M. S. Mauter, and M. Elimelech,“Physicochemical Determinants of Multiwalled Carbon Nanotube Bacterial Cytotoxicity”, Environmental Science & Technology, Vol. 42, pp. 7528-7534,(2008b).
52. Kang, S., M. S. Mauter, and M. Elimelech,“Microbial Cytotoxicity of Carbon-Based Nanomaterials: Implications for River Water and Wastewater Effluent”, Environmental Science & Technology, Vol. 43, pp. 2648-2653,(2009).
53. Kang, S., M. Pinault, L. D. Pfefferle, and M. Elimelech,“Single-walled carbon nanotubes exhibit strong antimicrobial activity”, Langmuir, Vol. 23, pp. 8670-3,(2007).
54. Kim, H.-J., T. Phenrat, R. D. Tilton, and G. V. Lowry,“Fe0 Nanoparticles Remain Mobile in Porous Media after Aging Due to Slow Desorption of Polymeric Surface Modifiers”, Environmental Science & Technology, Vol. 43, pp. 3824-3830,(2009).
55. Kirschling, T. L., P. L. Golas, J. M. Unrine, K. Matyjaszewski, K. B. Gregory, G. V. Lowry, and R. D. Tilton,“Microbial bioavailability of covalently bound polymer coatings on model engineered nanomaterials”, Environ Sci Technol, Vol. 45, pp. 5253-9,(2011).
56. Klaine, S. J., P. J. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S. Mahendra, M. J. McLaughlin, and J. R. Lead,“Nanomaterials in the Environment: Behavior, Fate, Bioavailability, and Effects”, Environmental Toxicology and Chemistry, Vol. 27, p. 1825,(2008).
57. Klumpp, C., K. Kostarelos, M. Prato, and A. Bianco,“Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics”, Biochim Biophys Acta, Vol. 1758, pp. 404-12,(2006).
58. Kumke, M. U., H. G. Löhmannsröben, and T. Roch,“Fluorescence quenching of polycyclic aromatic compounds by humic acid”, The Analyst, Vol. 119, p. 997,(1994).
59. Kurganov, B. I., S. N. Kochetkov, and V. I. Tishkov, “Modern enzymology : problems and trends” Commack, N.Y., Nova Science Publishers, xiv, 829 p. p (1995).
60. Law, N., S. Ansari, F. R. Livens, J. C. Renshaw, and J. R. Lloyd,“Formation of nanoscale elemental silver particles via enzymatic reduction by Geobacter sulfurreducens”, Appl Environ Microbiol, Vol. 74, pp. 7090-3,(2008).
61. Lecoanet, H. F., J.-Y. Bottero, and M. R. Wiesner,“Laboratory Assessment of the Mobility of Nanomaterials in Porous Media”, Environmental Science & Technology, Vol. 38, pp. 5164-5169,(2004).
62. Lecoanet, H. F., and M. R. Wiesner,“Velocity Effects on Fullerene and Oxide Nanoparticle Deposition in Porous Media”, Environmental Science & Technology, Vol. 38, pp. 4377-4382,(2004).
63. Lee, J., and N. M. Donahue,“Secondary organic aerosol coating of synthetic metal-oxide nanoparticles”, Environ Sci Technol, Vol. 45, pp. 4689-95,(2011).
64. Levard, C., B. C. Reinsch, F. M. Michel, C. Oumahi, G. V. Lowry, and G. E. Brown,“Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate”, Environ Sci Technol, Vol. 45, pp. 5260-6,(2011).
65. Li, D., D. Y. Lyon, Q. Li, and P. J. J. Alvarez,“Effect of Soil Sorption and Aquatic Natural Organic Matter on the Antibacterial Activity of a Fullerene Water Suspension”, Environmental Toxicology and Chemistry, Vol. 27, p. 1888,(2008a).
66. Li, M., M. E. Noriega-Trevino, N. Nino-Martinez, C. Marambio-Jones, J. Wang, R. Damoiseaux, F. Ruiz, and E. M. Hoek,“Synergistic bactericidal activity of Ag-TiO2 nanoparticles in both light and dark conditions”, Environ Sci Technol, Vol. 45, pp. 8989-95,(2011).
67. Li, Q., S. Mahendra, D. Y. Lyon, L. Brunet, M. V. Liga, D. Li, and P. J. Alvarez,“Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications”, Water Res, Vol. 42, pp. 4591-602,(2008b).
68. Li, Z., K. Greden, P. J. Alvarez, K. B. Gregory, and G. V. Lowry,“Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli”, Environ Sci Technol, Vol. 44, pp. 3462-7,(2010).
69. Lin, D., N. Liu, K. Yang, L. Zhu, Y. Xu, and B. Xing,“The effect of ionic strength and pH on the stability of tannic acid-facilitated carbon nanotube suspensions”, Carbon, Vol. 47, pp. 2875-2882,(2009).
70. Lin, D., and B. Xing,“Tannic Acid Adsorption and Its Role for Stabilizing Carbon Nanotube Suspensions”, Environmental Science & Technology, Vol. 42, pp. 5917-5923,(2008).
71. Lisunova, M. O., N. I. Lebovka, O. V. Melezhyk, and Y. P. Boiko,“Stability of the aqueous suspensions of nanotubes in the presence of nonionic surfactant”, J Colloid Interface Sci, Vol. 299, pp. 740-6,(2006).
72. Liu, S., L. Wei, L. Hao, N. Fang, M. W. Chang, R. Xu, Y. Yang, and Y. Chen,“Sharper and faster "nano darts" kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube”, ACS Nano, Vol. 3, pp. 3891-902,(2009).
73. Lok, C. N., C. M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. Sun, P. K. Tam, J. F. Chiu, and C. M. Che,“Silver nanoparticles: partial oxidation and antibacterial activities”, J Biol Inorg Chem, Vol. 12, pp. 527-34,(2007).
74. Lowry, G. V., K. B. Gregory, S. C. Apte, and J. R. Lead,“Transformations of nanomaterials in the environment”, Environ Sci Technol, Vol. 46, pp. 6893-9,(2012).
75. Lundqvist, M., J. Stigler, G. Elia, I. Lynch, T. Cedervall, and K. A. Dawson,“Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts”, Proc Natl Acad Sci U S A, Vol. 105, pp. 14265-70,(2008).
76. Lynch, I., and K. A. Dawson,“Protein-nanoparticle interactions”, Nano Today, Vol. 3, pp. 40-47,(2008).
77. Lyon, D. Y., J. D. Fortner, C. M. Sayes, V. L. Colvin, and J. B. Hughes,“Bacterial Cell Association and Antimicrobial Activity of a C60 Water Suspension”, Environmental Toxicology and Chemistry, Vol. 24, p. 2757,(2005).
78. Ma, R., C. Levard, S. M. Marinakos, Y. Cheng, J. Liu, F. M. Michel, G. E. Brown, and G. V. Lowry,“Size-controlled dissolution of organic-coated silver nanoparticles”, Environ Sci Technol, Vol. 46, pp. 752-9,(2012).
79. Madigan, M. T., “Brock biology of microorganisms” San Francisco, Benjamin Cummings, xxviii, 1043, 77 p. p (2012).
80. Matarredona, O., H. Rhoads, Z. Li, J. H. Harwell, L. Balzano, and D. E. Resasco,“Dispersion of Single-Walled Carbon Nanotubes in Aqueous Solutions of the Anionic Surfactant NaDDBS”, The Journal of Physical Chemistry B, Vol. 107, pp. 13357-13367,(2003).
81. Mauter, M. S., and M. Elimelech,“Environmental Applications of Carbon-Based Nanomaterials”, Environmental Science & Technology, Vol. 42, pp. 5843-5859,(2008).
82. Miao, A. J., K. A. Schwehr, C. Xu, S. J. Zhang, Z. Luo, A. Quigg, and P. H. Santschi,“The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances”, Environ Pollut, Vol. 157, pp. 3034-41,(2009).
83. Moghadam, B. Y., W. C. Hou, C. Corredor, P. Westerhoff, and J. D. Posner,“Role of nanoparticle surface functionality in the disruption of model cell membranes”, Langmuir, Vol. 28, pp. 16318-26,(2012).
84. Mohanty, B., A. K. Verma, P. Claesson, and H. B. Bohidar,“Physical and anti-microbial characteristics of carbon nanoparticles prepared from lamp soot”, Nanotechnology, Vol. 18,(2007).
85. Narayan, R. J., C. J. Berry, and R. L. Brigmon,“Structural and biological properties of carbon nanotube composite films”, Materials Science and Engineering: B, Vol. 123, pp. 123-129,(2005).
86. Navarro, E., F. Piccapietra, B. Wagner, F. Marconi, R. Kaegi, N. Odzak, L. Sigg, and R. Behra,“Toxicity of silver nanoparticles to Chlamydomonas reinhardtii”, Environ Sci Technol, Vol. 42, pp. 8959-64,(2008).
87. O′Connell, M. J., S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley,“Band gap fluorescence from individual single-walled carbon nanotubes”, Science, Vol. 297, pp. 593-6,(2002).
88. O′Connell, M. J., P. Boul, L. M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K. D. Ausman, and R. E. Smalley,“Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping”, Chemical Physics Letters, Vol. 342, pp. 265-271,(2001).
89. Pan, B., and B. Xing,“Adsorption mechanisms of organic chemicals on carbon nanotubes”, Environ Sci Technol, Vol. 42, pp. 9005-13,(2008).
90. Park, O.-k., N. H. Kim, K.-t. Lau, and J. H. Lee,“Effect of surface treatment with potassium persulfate on dispersion stability of multi-walled carbon nanotubes”, Materials Letters, Vol. 64, pp. 718-721,(2010).
91. Phenrat, T., N. Saleh, K. Sirk, R. D. Tilton, and G. V. Lowry,“Aggregation and Sedimentation of Aqueous Nanoscale Zerovalent Iron Dispersions”, Environmental Science & Technology, Vol. 41, pp. 284-290,(2007).
92. Phenrat, T., J. E. Song, C. M. Cisneros, D. P. Schoenfelder, R. D. Tilton, and G. V. Lowry,“Estimating attachment of nano- and submicrometer-particles coated with organic macromolecules in porous media: development of an empirical model”, Environ Sci Technol, Vol. 44, pp. 4531-8,(2010).
93. Plata, D. L., P. M. Gschwend, and C. M. Reddy,“Industrially synthesized single-walled carbon nanotubes: compositional data for users, environmental risk assessments, and source apportionment”, Nanotechnology, Vol. 19, p. 185706,(2008).
94. Pompeo, F., and D. E. Resasco,“Water Solubilization of Single-Walled Carbon Nanotubes by Functionalization with Glucosamine”, Nano Letters, Vol. 2, pp. 369-373,(2002).
95. Popov, V.,“Carbon nanotubes: properties and application”, Materials Science and Engineering: R: Reports, Vol. 43, pp. 61-102,(2004).
96. Reinsch, B. C., C. Levard, Z. Li, R. Ma, A. Wise, K. B. Gregory, G. E. Brown, Jr., and G. V. Lowry,“Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition”, Environ Sci Technol, Vol. 46, pp. 6992-7000,(2012).
97. Richter, K., M. Schicklberger, and J. Gescher,“Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration”, Appl Environ Microbiol, Vol. 78, pp. 913-21,(2012).
98. Romanova, N. A., L. Y. Brovko, L. Moore, E. Pometun, A. P. Savitsky, N. N. Ugarova, and M. W. Griffiths,“Assessment of photodynamic destruction of Escherichia coli O157 : H7 and Listeria monocytogenes by using ATP bioluminescence”, Applied and Environmental Microbiology, Vol. 69, pp. 6393-6398,(2003).
99. Saito, R., M. Fujita, G. Dresselhaus, and M. S. Dresselhaus,“Electronic-Structure of Chiral Graphene Tubules”, Applied Physics Letters, Vol. 60, pp. 2204-2206,(1992).
100. Saleh, N. B., L. D. Pfefferle, and M. Elimelech,“Aggregation Kinetics of Multiwalled Carbon Nanotubes in Aquatic Systems: Measurements and Environmental Implications”, Environmental Science & Technology, Vol. 42, pp. 7963-7969,(2008).
101. Saleh, N. B., L. D. Pfefferle, and M. Elimelech,“Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes”, Environ Sci Technol, Vol. 44, pp. 2412-8,(2010).
102. Schwyzer, I., R. Kaegi, L. Sigg, A. Magrez, and B. Nowack,“Influence of the initial state of carbon nanotubes on their colloidal stability under natural conditions”, Environ Pollut, Vol. 159, pp. 1641-8,(2011).
103. Shen, K., S. Curran, H. Xu, S. Rogelj, Y. Jiang, J. Dewald, and T. Pietrass,“Single-walled carbon nanotube purification, pelletization, and surfactant-assisted dispersion: a combined TEM and resonant micro-raman spectroscopy study”, J Phys Chem B, Vol. 109, pp. 4455-63,(2005).
104. Shih, Y. H., and M. S. Li,“Adsorption of selected volatile organic vapors on multiwall carbon nanotubes”, J Hazard Mater, Vol. 154, pp. 21-8,(2008).
105. Smith, B., K. Wepasnick, K. E. Schrote, A. R. Bertele, W. P. Ball, C. O’Melia, and D. H. Fairbrother,“Colloidal Properties of Aqueous Suspensions of Acid-Treated, Multi-Walled Carbon Nanotubes”, Environmental Science & Technology, Vol. 43, pp. 819-825,(2009a).
106. Smith, B., K. Wepasnick, K. E. Schrote, H. H. Cho, W. P. Ball, and D. H. Fairbrother,“Influence of surface oxides on the colloidal stability of multi-walled carbon nanotubes: a structure-property relationship”, Langmuir, Vol. 25, pp. 9767-76,(2009b).
107. Smith, B., J. Yang, J. L. Bitter, W. P. Ball, and D. H. Fairbrother,“Influence of surface oxygen on the interactions of carbon nanotubes with natural organic matter”, Environ Sci Technol, Vol. 46, pp. 12839-47,(2012).
108. Stankus, D. P., S. E. Lohse, J. E. Hutchison, and J. A. Nason,“Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents”, Environ Sci Technol, Vol. 45, pp. 3238-44,(2011).
109. Tan, Y., and D. E. Resasco,“Dispersion of single-walled carbon nanotubes of narrow diameter distribution”, J Phys Chem B, Vol. 109, pp. 14454-60,(2005).
110. Thurman, E. M., R. L. Wershaw, R. L. Malcolm, and D. J. Pinckney,“Molecular size of aquatic humic substances”, Organic Geochemistry, Vol. 4, pp. 27-35,(1982).
111. Vecitis, C. D., K. R. Zodrow, S. Kang, and M. Elimelech,“Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes”, ACS Nano, Vol. 4, pp. 5471-9,(2010).
112. Walczyk, D., F. B. Bombelli, M. P. Monopoli, I. Lynch, and K. A. Dawson,“What the cell "sees" in bionanoscience”, J Am Chem Soc, Vol. 132, pp. 5761-8,(2010).
113. Wang, F., J. Yao, K. Sun, and B. Xing,“Adsorption of dialkyl phthalate esters on carbon nanotubes”, Environ Sci Technol, Vol. 44, pp. 6985-91,(2010).
114. Wang, H., and E. K. Hobbie,“Amphiphobic Carbon Nanotubes as Macroemulsion Surfactants”, Langmuir, Vol. 19, pp. 3091-3093,(2003).
115. Wang, H., W. Zhou, D. L. Ho, K. I. Winey, J. E. Fischer, C. J. Glinka, and E. K. Hobbie,“Dispersing Single-Walled Carbon Nanotubes with Surfactants: A Small Angle Neutron Scattering Study”, Nano Letters, Vol. 4, pp. 1789-1793,(2004).
116. Wang, Z., M. D. Shirley, S. T. Meikle, R. L. D. Whitby, and S. V. Mikhalovsky,“The surface acidity of acid oxidised multi-walled carbon nanotubes and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions”, Carbon, Vol. 47, pp. 73-79,(2009).
117. Weisman, R. B., S. M. Bachilo, and D. Tsyboulski,“Fluorescence spectroscopy of single-walled carbon nanotubes in aqueous suspension”, Applied Physics A: Materials Science & Processing, Vol. 78, pp. 1111-1116,(2004).
118. Wiatrowski, H. A., P. M. Ward, and T. Barkay,“Novel Reduction of Mercury(II) by Mercury-Sensitive Dissimilatory Metal Reducing Bacteria”, Environmental Science & Technology, Vol. 40, pp. 6690-6696,(2006).
119. Wilkinson, K. J., and J. R. Lead, “Environmental colloids and particles : behaviour, separation and characterisation”, IUPAC series on analytical and physical chemistry of environmental systems Chichester, England ; Hoboken, NJ, John Wiley & Sons Ltd, xiv, 687 p., 4 p. of plates p (2007).
120. Wirth, S. M., G. V. Lowry, and R. D. Tilton,“Natural organic matter alters biofilm tolerance to silver nanoparticles and dissolved silver”, Environ Sci Technol, Vol. 46, pp. 12687-96,(2012).
121. Yang, C., J. Mamouni, Y. Tang, and L. Yang,“Antimicrobial activity of single-walled carbon nanotubes: length effect”, Langmuir, Vol. 26, pp. 16013-9,(2010).
122. Yang, K., L. Zhu, and B. Xing,“Adsorption of Polycyclic Aromatic Hydrocarbons by Carbon Nanomaterials”, Environmental Science & Technology, Vol. 40, pp. 1855-1861,(2006).
123. Zhou, X., L. Shu, H. Zhao, X. Guo, X. Wang, S. Tao, and B. Xing,“Suspending multi-walled carbon nanotubes by humic acids from a peat soil”, Environ Sci Technol, Vol. 46, pp. 3891-7,(2012).
124.成會明,「奈米碳管」,五南圖書出版社,2004。
125.吳瑋羚,「奈米碳管在鄰苯二甲酸酯類溶液與腐植酸溶液中之分散與絮凝」,碩士論文,國立中央大學環境工程研究所,2012。
126.杜玉琴,「鄰苯二甲酸酯類和腐植酸在多壁奈米碳管上的吸附」,碩士論文,國立中央大學環境工程研究所,2011。
指導教授 林居慶 審核日期 2014-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明