博碩士論文 100230004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.16.147.124
姓名 蘇堡銓(Pao-chuan Su)  查詢紙本館藏   畢業系所 生物物理研究所
論文名稱 以雷射光控制膠原蛋白字組成之結構
(Light-controlled self-assembly of collagen)
相關論文
★ GW準粒子於Mn3O4和GaN的激發態性質計算★ 混合物種與低溫冷凍原子團簇噴流的發展
★ 以雷射脈衝對磁性薄膜進行超快磁轉化及其動態時間解析★ 以脈衝雷射沈積製造FeBO3薄膜
★ 共焦拉曼與螢光顯微鏡之發展及其在材料診斷上之應用★ 以光激發黑色素來清除細胞環境中之活性氧之探討
★ 發展在電漿波導式雷射電漿波電子加速器中誘發電子注入與X 光產生之技術★ 莫斯堡光譜儀的建造以及其應用到FeCO3薄膜的診斷
★ 發展利用另一道脈衝雷射在脈衝雷射沉 積技術中成長碳薄膜的雷射同步過程進 行碳薄膜晶向之控制★ 研究以雷射進行基板之前置處理來達到控制脈衝雷射沉積的矽鍺量子點的尺寸分布的可行性
★ 以超短脈衝雷射沉積技術製作鍺/矽薄膜之研究★ 一百兆瓦雷射系統之建造與在結構化電漿波導之應用
★ 以基質輔助脈衝雷射蒸鍍法製備聚3-己基噻酚/(6,6)-苯基-C61-丁酸甲酯有機太陽能電池★ 黑色素的奈米化大幅提升其用在保護細胞對抗活性氧壓力的效用
★ 藥物劑量與復原時間影響光動力療法疫苗之功效的系統性研究★ 光控制實用的材料製程在PEM燃料電池及光電元件上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 膠原蛋白代表了胞外基質的主要結構蛋白,闡明其裝配的機制對於理解許多細胞生物學和醫學過程,以及用於組織工程和生物技術的方法,更是學術研究的主軸,但是目前研究方向不外乎為明膠與膠原纖維的大尺度比較,卻只有對於外觀上D-period的多寡證實材料製程上的可信度。

  然而在微尺度的研究上,不管是用機械力或外加磁場都並未真正有效達成定向纖維的薄膜控制,且內部的交聯結構並未進行探究,也尚未沒有一個確切的模型,近年來發現在雲母片及二氧化鉬可以使低濃度下的膠原長成單片薄膜,對於膠原蛋白在體外的自組成上的有更加一步地探究模型,這也是我這篇論文最主要的軸心,我們利用此基板的特性為出發點,進行對膠原蛋白結構上可能的控制變因,並設計出了用雷射光的受激拉曼效應使局部材料吸共振吸收,導致局部性的材料加熱,並採用光壓達到薄膜上材料的指向穩定控制。
摘要(英) Collagen represents the major structural protein of the extracellular matrix. Elucidating the
mechanism of its assembly is important for understanding many cell biological and medical
processes as well as for tissue engineering and biotechnological approaches.
In this work, conditions for the self-assembly of collagen type I molecules on a supporting
surface were characterized.
By applying deposition dynamics deposition of collagen on a substrate at room temperature
using an appropriate solvent, collagen assembled into ultrathin ( 4nm) highly anisotropic ribbon-like
structures coating the entire support.
We use stimulated Raman scattering system enables absorption of specific functional groups to
allow local resonance absorption, causing local heating of the material, and applying a
ponderomotive force to the collagen fibers, in order to achieve a stable directional control.
關鍵字(中) ★ 膠原蛋白薄膜
★ 受激拉曼散射
★ 光壓
★ 表面增強拉曼散射
★ 奈米線
★ 光極化
關鍵字(英) ★ collagen microribbons
★ Stimulated Raman Scattering
★ Ponderomotive Force
★ Surface Enhanced Raman Scattering (SERS)
★ Nanowire
論文目次 目錄
中文摘要 …………………………………………………………… i
英文摘要 …………………………………………………………… ii
誌謝 …………………………………………………………… iii
目錄 …………………………………………………………… iv
圖目錄 …………………………………………………………… v  
表目錄 …………………………………………………………… vi  
符號說明 …………………………………………………………… vii  
第一章、  緒論 ……………………………………………………… 1  
   1-1 前言 ……………………………………………………… 1
   1-2 研究背景與文獻回顧………………………………………………… 3
    1-2-1組織工程與再生醫學………………………………………………3
    1-2-2膠原蛋白的細胞鷹架………………………………………………4
    1-2-3膠原蛋白簡介………………………………………………………5
    1-2-4 Type I collagen的結構與徵狀………………………………………7
    1-2-5 Type I collagen纖維的沉積薄膜製造……………………………10
   1-3 研究動機 ………………………………………………………… 16
   1-4 章節概述 ……………………………………………………………18
第二章、  研究內容與方法…………………………………………………… 19  
   2-1 實驗藥品與配置………………………………………………… 19  
   2-2 樣品製備與流程……………………………………………………20
   2-3 相關理論探討……………………………………………………22
    2-3-1 質動力( pondermotive force) …………………………………22
    2-3-2 拉曼光譜及拉曼散射理論……………………………………23
2-3-3 表面增強拉曼散射(Surface Enhanced Raman Scattering)……25
2-3-3.1 物理機制的電磁增強效應………………………………26
2-3-3.2 化學增強效應(chemical enhancement effect)………26
   2-3-4 受激拉曼散射效應(Stimulated Raman Scattering)…………27 

第三章、  系統架構與診斷儀器……………………………………… 29  
   3-1 系統架設……………………………………………………… 29  
    3-1-1 雷射光源介紹………………………………………………… 29 
    3-1-2 雷射交集於靶材上的beam profile…………………………30
    3-1-3 光路架設………………………………………………32
  3-2 綠光共軛焦拉曼與螢光光譜儀應用平台…………………………34
  3-3 原子力顯微鏡(Atomic Force Microscope) …………………………35
  3-4 熱像儀(Thermal Imaging InfraRed Camera)…………………………36

第四章、  實驗結果與討論………………………………………………… 37  
   4-1 拉曼頻譜與波長的抉擇……………………………………………37
   4-2 不同化學條件下的樣品自組成檢測…………………………………39
   4-3 照光有效面積下,collagen film生成的均勻測試………………42
   4-4 不同雷射強度下的樣品測試………………………………………43
    4-4-1 tropocollagen於雷射最高光強度(1.21 〖W/cm〗^2)照射生成………44
    4-4-2 tropocollagen於雷射強度調降至0..605 〖W/cm〗^2照射生成………48
   4-5 偏振互相垂直的質動力測試…………………………………………49
   4-6 單一波長下的質動力測試…………………………………………51
    4-6-1  905 nm的質動力測試………………………………………51
    4-6-2  792 nm的質動力測試………………………………………52
   4-7 熱像儀的溫度分佈量測…………………………………………54
    4-7-1  Muscovite基板的雷射照射…………………………………55
    4-7-2 平行偏振雷射(P)照射下,基板於不同溶質下的溫度分佈……56
    4-7-3 792nm與902nm雷射的偏振方向及不同能量照射下的比較並
與AFM做探討………………………………………………58
   4-8 水蒸散測試……………………………………………………60
   4-9 最高溫度下樣品的生成檢視…………………………………62
   4-10 銀基板樣品生成測試…………………………………………63
第五章、  總結……………………………………………………… 65  
第六章、  未來展望…………………………………………………………69  附錄 …………………………………………………………… 70   
參考文獻 …………………………………………………………… 79
參考文獻 [1] Einstein, A., On the quantum theory of radiation. Phys. Z, 1917. 18: p. 121-128.

[2] M. Fleishmann, p. J. Hendra, A. J. Mequillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, Volume 26, Issue 2, p. 163-166.

[3] David Alejandro Cisneros Armas , Molecular assemblies observed by atomic force microscopy, geboren am 12. August 1978 in Mexiko Stadt (Mexiko)

[4] Kennedy, B. *, Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols, The Journal of Physical Chemistry B, 1999. 103(18): p. 3640-3646

[5] Langer, R. & Vacanti, J. P. Tissue engineering. Science 260:920-926 (1993)

[6] R. L. McCreery, Raman spectroscopy for chemical analysis vol. 157:
Wiley‐Interscience, 2000.

[7] K. Gelse, E. Po¨schl, T. Aigner*, Collagens—structure, function, and biosynthesis, Advanced Drug Delivery Reviews 55 (2003) 1531– 1546

[8] Frederick H. Silver*, Joseph W. Freeman, Gurinder P. Seehra, Collagen self-assembly and the development of tendon mechanical properties, Journal of Biomechanics 36 (2003) 1529–1553

[9] Peter Fratzl*, Cellulose and collagen: from fibres to tissues, Current Opinion in Colloid and Interface Science 8 (2003) 32–39

[10] Ferraro, J.R., K. Nakamoto, and C.W. Brown, Introductory raman spectroscopy, 2003: Academic Pr.

[11] Rechberger ,W. *, Optical properties of two interacting gold nanoparticles, Optics Communications, 2003. 220(1-3): p. 137-141.

[12] Jiang F*, Horber H, Howard J, Muller DJ, Assembly of collagen into microribbons: effects of pH and electrolytes, Journal of Structural Biology 148 (2004) 268-278

[13] Svedberg, F. and M. Kall, On the importance of optical forces in surface-enhanced Raman scattering (SERS), Faraday Discussions, 2006. 132: p. 35-44.

[14] Paolo P. Provenzano*, Ray Vanderby Jr, Collagen fibril morphology and organization: Implications for force transmission in ligament and tendon, Matrix Biology 25 (2006) 71 – 84

[15] Julie Glowacki, Shuichi Mizuno1, Collagen Scaffolds for Tissue Engineering, Biopolymers Volume 89 / Number 5 (2007)

[16] Loo RW*, Goh MC.Potassium ion mediated collagen microfibril assembly on mica.Langmuir. 2008 Dec 2;24(23):13276-8.

[17] Nima Saeidi*, On the control of collagen fibril organization andMorphology, Northeastern University, January 01, 2009

[18] Hossain, M.K. and Y. Ozaki, Surface-enhanced Raman scattering: facts and
inline trends. Current science, 2009. 97(2): p. 192.

[19] Matthew D. Shoulders and Ronald T. Raines, Collagen Structure and Stability, Annu Rev Biochem. 2009 ; 78: 929–958.

[20] Y. Fleger1,2and M. Rosenbluh1,2 , Surface Plasmons and Surface Enhanced Raman Spectra of Aggregated and Alloyed Gold-Silver Nanoparticles, Research Letters in Optics, Volume 2009, Article ID 475941, 5 pages

[21] Janko M1*, Davydovskaya P, Bauer M, Zink A, Stark RW, Anisotropic Raman scattering in collagen bundles, Optics Society of America, 2010,vol.35,No. 16

[22] Marlena Gasior-glogowska*, ,Malgorzata Komorowska, Jerzy hanuza, Maciej ptak , Magdalena Kobielarz, Structural alteration of collagen fibres–spectroscopic and mechanical studies, Acta of Bioengineering and Biomechanic, Vol. 12, No. 4, 2010

[23] Franz CM*, Muller DJ, Studying collagen self-assembly by time-lapse high-resolution atomic force microscopy, Methods Mol Biology, volume 2011;736:97-107

[24] Corinne Gullekson*, Leanne Lucas, Kevin Hewitt, and Laurent Kreplak Surface-Sensitive Raman Spectroscopy of Collagen I Fibrils, Biophys Journal. April 6, 2011; 100(7): 1837–1845.

[25] Wee Wen Leow†and Wonmuk Hwang* , Epitaxially Guided Assembly of Collagen Layers on Mica Surfaces, Langmuir 2011, 27, 10907–10913

[26] S.J. Kewa*, J.H. Gwynneb, D. Eneac, M. Abu-Rubd, A. Panditd, D. Zeugolisd, R.A. Brooksc, N. Rushtonc, S.M. Bestb, R.E. Cameronb,Regeneration and repair of tendon and ligament tissue using collagen fibre biomaterials, Acta Biomaterialia 7,2011, Pages 3237–3247

[27] Dong Fan , Abhijit Takawale , Jiwon Lee and Zamaneh Kassiri* , Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease, Fibrogenesis & Tissue Repair 2012, 5:15

[28] Jian-Wei Liu, Hai-Wei Liang, and Shu-Hong Yu*, Macroscopic-Scale Assembled Nanowire Thin Films and Their Functionalities, American Chemical Society Chem. Rev. 2012, 112, 4770−4799

[29] S. Rigozzi , R. M ¨uller , A. Stemmer , J.G. Snedeker* , Tendon glycosaminoglycan proteoglycan sidechains promote collagen fibril sliding—AFM observations at the nanoscale, Journal of Biomechanics 46 (2013) 813–818

[30] Badri Narayanan,George H. Gilmer, Jinhui Tao, James J. De Yoreo,and Cristian V. Ciobanu* , Self-Assembly of Collagen on Flat Surfaces: The Interplay of Collagen−Collagen and Collagen−Substrate Interactions, Langmuir 2014, 30, 1343−1350

[31] 王仕宇,利用時間解析的表面增強拉曼散射光譜探討 CV 及 R6G 在奈米金屬膠體溶液中的吸附動力學,嘉義大學碩論,2010.
指導教授 陳賜原(Szu-yuan Chen) 審核日期 2014-10-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明