博碩士論文 88332014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:52.15.63.145
姓名 簡錫雲(Shyi-Yun Jean )  查詢紙本館藏   畢業系所 土木工程研究所
論文名稱 應用隅撐抗彎構架石化廠房耐震行為研究
(Apply The Knee Bracing Moment Resisting Frame to Petrochemical-oil Plant for Seismic Resistant Behaviore)
相關論文
★ 隅撐鋼結構耐震性能研究★ 含斜拉鋼筋之中空複合構件於三維載重下之耐震行為
★ 應用不同尺度隅撐之鋼結構耐震性能研究★ 雙孔中空複合構件耐震性能研究
★ 具挫屈控制機制之隅撐構架耐震行為研究★ 圓形中空複合構材耐震性能研究
★ 多層多跨隅撐鋼結構之耐震性能研究★ 隅撐抗彎構架之性能設計研究與分析
★ 配置開槽消能鋼板之預力式橋柱耐震性能研究★ 具鋼板消能裝置之隅撐結構耐震行為研究
★ 中空鋼骨鋼筋混凝土耐震補強有效性研究★ 具自復位隅撐鋼結構耐震性能研究
★ 具自復位梁柱接頭隅撐鋼結構耐震性能研究★ 具消能隅撐內框架之構架耐震性能研究
★ 具摩擦消能機制之Y型隅撐鋼結構耐震性能研究★ 全鋼線網圍束中空複合構材之扭轉撓曲行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要在探討隅撐抗彎構架應用於石化廠房耐震行為,而廠房結構一般為開放式結構(Open Frame),其主要目的在支撐設備支及管線等,因此結構系統佈置為配合廠房維修及操作機能,於鋼柱強軸方向以傳統式抗彎構架(SMRF)為主,而鋼柱弱軸方向則以倒V或X型同心斜撐構架(CBF)為主。柱強軸方向之抗彎構架(SMRF),具有良好韌性,但其側向勁度較柔軟,致彈性側位移過大,且受限於規範對結構物容許側位移量或層間相對位移不得超過二百分之一的結構物或層間高度,因此設計者欲符合規範限制只好加大樑柱桿件尺寸,因而得到較高成本的結構。
因此吾人尋求將高韌性抗彎構架(SMRF)加設隅撐(Knee Bracing),簡稱隅撐抗彎構架 (Knee Bracing Moment Resistance Frame),並以KBRF縮寫來表示之。分別透過相對側向勁度、強度、韌性及經濟性等方面分析,再配合工程實例進行分析設計,藉以比較隅撐抗彎構架相對於抗彎構架之耐震行為及經濟性。
首先針對相對側向勁度分析結果,發現隅撐抗彎構架可藉著調整隅撐距柱中心線距離eb,來提高構架勁度,且為考慮整體構架實用性及安全性,建議隅撐斜率以1:1及eb構架寬度)為宜, 並可提高側向勁度1.3~1.8倍。
其次關於構架韌性及強度分析初步結論,當隅撐位置介於 時,隅撐抗彎構架強度優於抗彎構架,其隅撐抗彎構架與抗彎構架為之初始降伏強度比為1.25~1.75,極限強度比為1.2~1.65倍。至於韌性方面,當 時, 隅撐抗彎構架稍小於抗彎構架,但 時,則隅撐抗彎構架優於抗彎構架,唯建議當構架樓層高度與寬度比 及 配置時,建議外柱與樑塑性彎矩強度比 需大於1.5,俾利若構架進入線性行為時,塑性鉸逐步發生於每一樓層的樑與隅撐交點之樑上,減少發生於樓層柱與隅撐交點之柱上,引致破壞機構過早產生而減低其韌性值。
在經濟性分析方面,採用實例構架狀況進行評估,其結果隅撐抗彎構架比抗彎構架可節省鋼料9%~11%,視構架規模而定。
綜合上述,只要正確佈置隅撐於抗彎構架上及注意柱樑塑性彎矩強度比值,則隅撐抗彎構架之耐震能力優於抗彎構架,且其塑性鉸產生的位置可遠離樑端,避免樑柱抗彎接頭因塑性轉角能力不足而導致接頭脆性破壞,為隅撐應用於抗彎構架之重要效益。
摘要(英) This paper is focused to apply the knee bracing combined with special moment resistance frame on petrochemical-oil plants. The structures of petrochemical plants are usually open frame structures supporting equipment and piping. For operation and maintenance reasons, Special Moment Resisting Frames (SMRF) are utilized in the direction parallel to column web and Special Concentrically Braced Frames (SCBF) with inverted-V-type or X-type braces are utilized in another direction. But, the lateral drifts of SMRF are often too large to meet the 1/200 story drift limit. So the designers have to enlarge the member size of columns and beams to reduce the lateral displacement of the rigid frames. Consequently the cost for structural construction will be high.
To avoid the above-mentioned disadvantage of SMRF, we investigated a rigid frame system with knee braces. This system is called Knee Bracing Moment Resisting Frame and abbreviated as KBRF. Through this research, we analyzed the following items of SMRF and KBRF.
1. Lateral stiffness of frame
2. Ductility of structural system
3. Strength of structural system
4. Cost savings
5. A really engineering sample
By comparing the results of the five items, we will know KBRF is ductile and economical structure for petrochemical-oil plants, and the design criteria will be provided simultaneously.
By analyzing the lateral stiffness of KBRF, we found that the lateral stiffness would be raised by adjusting the distance from the intersection of beam and knee brace to column center (eb). For safety and operation reasons, a 1:1 slope and (w=span) of knee braces are recommended. According to the analysis result, the lateral stiffness of KBRF is about 1.3~1.8 times SMRF.
For ductility and strength of structural system, we also have some conclusion below.
1. When knee brace is located with , initial strength of KBRF will be raised about 1.25~1.75 times SMRF. And ultimate strength of KBRF will be raised about 1.20~1.65 times SMRF
2. When knee brace is located with , ductility of KBRF is slightly less than SMRF. When knee brace is located with , ductility of KBRF is larger than SMRF. However, when the floor height (h1) to span width (w) ratio of frame is more than 1.0 ( ) and , the exterior column-beam moment ratio should be more than 1.5 in order to prevent the early formation of plastic hinge in exterior column. As a result, most plastic hinge of KBRF will be formed on beam of the intersection of beam and knee brace.
About the costs of both systems, by really engineering example, we found that the total steel weight of KBRF is 9%~11% less than the weight of SMRF. So we can say that the KBRF is more economical than SMRF.
In a word, we can design a ductile KBRF to sustain seismic load by properly locating the knee braces and adjusting the exterior column-beam moment ratio. On the other hand, most plastic hinges of KBRF are far away from beam-to-column joints. Therefore the moment connection failure as Northridge earthquake in the United States can be avoided. This is one of the important results of this research.
關鍵字(中) ★ 開放式結構
★  隅撐
★  隅撐抗彎構架系統
關鍵字(英) ★ knee bracing
★  knee bracing moment re
★  open frame
論文目次 目 錄 頁次
第一章 緒論
1.1前言 …………………………………………………………………1
1.2 研究動機及目的 .…………………………………………………3
1.3 研究內容及方法 .…………………………………………………4
第二章 文獻回顧
2.1結構系統回顧 ………………………………………………………6
2.2耐震設計回顧 ………………………………………………………8
第三章 構架勁度、受力及周期分析
3.1構架評估項目 ……………………………………………………16
3.2平面構架勁度 …………………………………………………… 16
3.3構架勁度分析模型與假設…………………………………………18
3.4隅撐與構架相對勁度關係……………………………………… 20
3.5構架桿件受力之變化…………………………………………… 22
3.6構架周期分析 …………………………………………………… 26
第四章 構架韌性及強度分析
4.1構架韌性概述………………………………………………………27
4.2構架韌性分析方法…………………………………………………27
4.3鋼材應力-應變關 …………………………………………………30
4.4桿件降伏條件及狀態………………………………………………30
4.5構架破壞定義 …………………………………………………… 35
4.6構架韌性分析模型與假設…………………………………………35
4.7隅撐抗彎構架韌性分析結果………………………………………36
第五章 經濟性及工程實例分析比較
5.1經濟性評估 ……………………………………………………… 39
5.2工程設計實例分析………………….…………………………… 40
5.3工程實例構架分析補充說明….………………………………… 43
5.4工程實例分析結果與討論….…………………………………… 43
第六章 結論與未來展望
6.1結論 …………………………………………………………… 48
6.2未來展望………………………………………………………… 50
參考文獻……………………………………………………………… 52
參考文獻 參考文獻
1. Krawinkler, H.,“Shear in Beam-Column Joint in Seismic Design of Steel Frames”,Engineering Journal,AISC,Vol.15,No.3,pp.82-91,1978.
2. Tasi, K.C. and Popov, E.P.,“Seismic Panel Zone on Elastic Story Drift in Steel Moment Resistance Frames ”, Journal of Structural Engineering,ASCE,Vol.116,No.12, Dec.1990。
3. Bungale S. Taranath., “Structural Analysis & Design of Tall Building”, McGraw-Hill 100 years,1988。
4. American Institute of Steel Construction, Inc. (AISC), “Seismic Provisions for Structural Steel Building”, April 15,1997。
5. Michel Bruneau,Chia-Ming Uang and Andrew Whittaker, “Ductile Design of Steel Structures”, McGraw-Hill Company,1998。
6. American Institute of Steel Construction, Inc. (AISC), “Manual of Steel Construction ,Allowable Stress Design”, Ninth Edition,1989。
7. Task Committee on Seismic Evaluation and Design of Petrochemical Facilities of the Petrochemical Committee of the Energy Division of the America Society of Civil Engineers(ASCE), “ Guidelines for Seismic Evaluation and Design of Petrochemical Facilities”, 1997。
8. Beedle, L. S. “Plastic Design of Steel Frame”, John Wiley,New York,1958。
9. ASCE 7-88 and 7-92, “Minimum Design Loads for Buildings and Other Structures”, American National Standards Institute, Inc., New York,NY,1988 and 1992。
10.Krawinkler, H., Bertero, V.V. and Popv, E.P., “Hysteresis Behavior of Steel Columns”, Report No. UCB/EERC-75/11, Earthquake Engineering Research Center, University of California, Berkeley, CA,1975 。
11. American Institute of Steel Construction, Inc. (AISC), “Manual of Steel Construction ,Loading Rsistance Factor Design”, First Edition,1989。
12.Daryl L. Logan “A First Course in the Finite Element Method Using Algor” PWS Publishing Company,1997
13.Orbison, J.G. McGuire, W. and Abel, J.F., “Yield Surface Aplication in Nonlinear Steel Frame Analysis”, Comp. Meth. In Appl. Mech. Engineering, Vol.33, pp.557-573,1982
14.Duan, L.,and Chen, W.F., “Design Interaction Equation for Steel Beam-Columns”, J. of Structural Engineering, ASCE, Vol.115, No.5, pp.1225-1241, May,1989
15. Structural Engineers Association of California “Performance Based Seismic Engineering of Building” April 3,1995
16.內政部, “鋼構造建築物鋼結構設計技術規範,鋼結構容許應力設計法規範及解說”, 民國88年1月。
17.內政部, “建築物耐震設計規範及解說”, 民國86年6月。
18.蔡克銓、蔡益超、邱昌平, “鋼結構韌性設計規範研究”, 結構工程,第七卷第三期,民國81年9月。
19.翁正強, “鋼骨特殊抗彎構架(SMRF)行為原理與耐震設計”,結構工程,第九卷第三期,民國83年9月。
20.翁正強, “高層鋼骨建築偏心斜撐構架(EBF)耐震設計:行為與原理”,結構工程,第十一卷第二期,民國85年6月。
21.蔡益超, “建築物韌性與耐震”, 結構工程,第八卷第三期,民國82年9月。
22.陳生金、陳舜田、葉禎輝、周作隆, “強裂地震下鋼骨樑柱接頭之破壞及高韌性接頭之開發”, 結構工程,第十一卷第四期,民國85年12月。
23.王寶璽、葉志浩、黃世霖,“剛架塑性分析方法比較(上)(下)”,結構工程,第十一卷第三、四期,民國85年9月、12月。
24.廖源輔, “考慮接頭非線性之多層鋼構架歷時動力分析之研究”, 台灣大學土木工程學系碩士論文,陳清泉教授指導,民國77年6月。
25.吳明興, “含偏心斜撐構架之非線性分析及韌性行為研究”,台灣大 學土木工程學系碩士論文,邱昌平教授指導,民國81年6月。
26.葉禎輝, “高性能鋼骨抗彎構架系統之開發-樑柱接頭之研究”,國立台灣工業技術學院營建工程技術研究所碩士論文, 陳生金教授指導,民國82年6月。
27.陳嘉有, “韌性鋼骨樑柱接頭行為研究”, 台灣大學土木工程學系碩士論文,蔡克銓教授指導,民國84年6月。
28. 內政部, “建築技術規則”, 民國88年1月。
指導教授 許協隆(Hsieh-Lung Hsu) 審核日期 2001-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明