博碩士論文 995401004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:3.149.233.97
姓名 陳彥龍(Yen-Lung Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 考慮製程變異與老化效應之類比電路可靠度自動化設計方法
(Automated Robust Design Optimization of Analog Circuits Considering Process Variations and Aging Effects)
相關論文
★ 運算放大器之自動化設計流程及行為模型研究★ 高速序列傳輸之量測技術
★ 使用低增益寬頻率調整範圍壓控震盪器 之1.25-GHz八相位鎖相迴路★ 類神經網路應用於高階功率模型之研究
★ 使用SystemC語言建立IEEE 802.3 MAC 行為模組之研究★ 以回填法建立鎖相迴路之行為模型的研究
★ 高速傳輸連結網路的分析和模擬★ 一個以取樣方式提供可程式化邏輯陣列功能除錯所需之完全觀察度的方法
★ 抑制同步切換雜訊之高速傳輸器★ 以行為模型建立鎖相迴路之非理想現象的研究
★ 遞迴式類神經網路應用於序向電路之高階功率模型的研究★ 用於命題驗証方式的除錯協助技術之研究
★ Verilog-A語言的涵蓋率量測之研究★ 利用類神經模型來估計電源線的電流波形之研究
★ 5.2GHz CMOS射頻接收器前端電路設計★ 適用於OC-192收發機之頻率合成器和時脈與資料回復電路
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著元件尺寸的遽縮,電路設計者須考量的非理想效應亦隨之增加,如電路寄生效應、製程變異、電路老化效應等等,這些效應對電路效能之影響甚為劇烈。若能在電路設計初期,即評估非理想效應對於電路效能之影響,則可降低重新設計的時間與成本。因此,本論文提出一套有效考慮非理想效應之類比電路自動化設計流程,可從電路規格產出到實際電路佈局,設計所有電晶體、電路元件參數。同時在設計階段,分別考量電路寄生效應、製程變異與電路老化效應對於電路效能之影響,有效避免設計的電路不符合電路規格之情況。

首先,本論文提出一套電路設計自動化流程,可在電路設計階段,將電路寄生效應加入考量,依據電路樣板,評估電路佈局前與佈局後的效能差異,並以此為依據,進行修正與最佳化,可避免電路效能在實際佈局後,出現不符合使用者規格之情況。

第二部分介紹本論文所提出的改良式製程變異之分析技術,可快速分析電路效能在製程變異影響下的變動程度及良率(yield),而不需進行費時的模擬程序。結合此分析方式,所提出之最佳化流程,不僅可提升良率評估的速度及準確性,並能同時將電路面積與功耗視為最佳化之目標,如此,可確保設計之電路在擁有高良率的同時,亦保有小面積與低功耗之特性。

第三部分介紹本論文提出的階層式電路可靠度分析流程,可同時考量製程變異與電路老化之現象,結合此分析方法後,即可快速且準確地獲得製程變異與電路老化之資訊,如此,有效確保所設計之電路在一定使用時間之後,仍可符合電路規格。

由實驗結果可知,本論文所提出的電路自動化設計流程,確實可有效考慮電路非理想效應對於電路效能之影響,並且修正電路參數,以符合電路之規格,並提升設計的良率。此外,本論文提出之設計流程亦可達到較小的電路面積與功率消耗,並能依使用者之需求彈性調整目標。相信如此的方式,能幫助設計者面對深次微米製程的挑戰,並加速電路設計之流程。
摘要(英) With shrinking device size in deep submicron process, many non-ideal effects impact circuit performances critically. If those non-ideal effects can be considered in the early design stage, the re-design and re-spin cost can be avoided. Thus, a reliable design flow from specification to fabrication is presented, which consider parasitic effects, process variations, and aging effects.

Firstly, a layout-aware automated design flow is proposed in this dissertation to consider the layout-induced parasitic effects based on a flexible layout template. Therefore, the case that the performance fails to meet the specifications after layout can be avoided.

Secondly, a modified equation-based variance analysis method is proposed to calculate each performance variations without simulations. It can be used to improve the accuracy of yield prediction for each possible solution in equation-based optimization. This design flow enables simultaneously optimization with other design objectives like power or area cost to prevent unnecessary over-design.

Finally, a hierarchical reliability analysis and a reliable design flow is proposed to estimate the performance degradation considering process variations and aging effects simultaneously. With the fast and accurate prediction of degradation effects, the fresh yield and lifetime yield are considered simultaneously at the sizing stage.

As shown in the experimental results, the proposed method ensures the performance after layout due to accurate prediction the parasitic effects. Also, this design flow can further improve the fresh yield and lifetime yield, and the design overhead is reduced significantly with within a fast computation time.
關鍵字(中) ★ 類比設計自動化
★ 製程變異
★ 寄生效應
★ 元件老化
★ 良率
★ 軟性電子
關鍵字(英) ★ Analog Design Automation
★ Process Variation
★ Parasitic Effect
★ Aging Effect
★ Yield
★ Flexible Electronics
論文目次 摘要..................................................... i
Abstract................................................. iii
致謝..................................................... iv
Contents ................................................ vi
Figure List ............................................. ix
Table List............................................... xii
Chapter 1 Introduction................................... 1
1.1 The Design Flow of AMS Systems ...................... 1
1.2 Computer-Aided Design in AMS Systems................. 4
1.2.1 Circuit Simulation................................. 5
1.2.2 Behavior Models ................................... 7
1.2.3 Topology Selection ................................ 8
1.2.4 Device Sizing...................................... 8
1.2.5 Layout Implementation & Manufacturing ............ 11
1.3 Design Issues with Non-ideal Effects ............... 13
1.3.1 Parasitic Effects ................................ 14
1.3.2 Process Variations................................ 18
1.3.3 Aging Effects..................................... 23
1.4 Contributions ...................................... 26
Chapter 2 Bias-Driven AMS Design Optimization .......... 29
2.1 The Bias-Driven Design Method ...................... 29
2.2 The Proposed Bias-Driven Design Flow................ 30
2.2.1 Bias-Driven Performance Equations Transformation.. 32
2.2.2 Nonlinear Lookup Table and Device Sizing ......... 34
2.2.3 The Overall Optimal Design Flow................... 37
2.3 Experimental Results ............................... 39
2.3.1 Accuracy Verification............................. 40
2.3.2 Results Comparison of Two-Stage OPA .............. 42
2.4 Summary ............................................ 43
Chapter 3 Robust Synthesis Flow for LDO Regulators ..... 45
3.1 Low Dropout (LDO) Regulator......................... 47
3.1.1 Previous LDO Synthesis Works ..................... 50
3.2 Parasitic-Aware Performance Analysis ............... 52
3.2.1 Parasitics in A Layout Template .................. 52
3.2.2 Layout-Aware Performance Analysis ................ 54
3.3 Automated Layout Generation With Laker ............. 56
3.3.1 Laker and Tcl/Tk ................................. 56
3.3.2 Transistor and Guard Ring Generation ............. 57
3.3.3 Resistor and Capacitor Generation................. 59
3.3.4 Layout Template................................... 62
3.4 Variation-Aware Performance Analysis ............... 63
3.4.1 Related Works..................................... 63
3.4.2 Hierarchical Variance Analysis.................... 66
3.5 Proposed Robust Automated Synthesis Flow ........... 69
3.6 Experimental Results ............................... 71
3.7 Summary ............................................ 74
Chapter 4 Reliability Optimization Flow For Flexible TFTs 75
4.1 Design Issues with Flexible TFTs ................... 75
4.1.1 Mechanical Stress................................. 79
4.1.2 Transistor Aging Effects.......................... 80
4.2 The Related Works About Reliable Analysis and Design 81
4.3 Reliability-Aware Consideration..................... 82
4.3.1 Degradation Model of Flexible TFTs ............... 82
4.3.2 Circuit Sizing With Degradation Model ............ 83
4.4 Experimental Results ............................... 84
4.4.1 Accuracy Verification............................. 86
4.4.2 Optimization Results of the OPA Circuit .......... 90
4.4.3 Optimization Results of the DAC Circuit........... 92
4.4.4 Optimization Results of the LED Driver ........... 93
4.5 Summary ............................................ 95
Chapter 5 Conclusions and Future Works ................. 98
Reference ............................................. 101
參考文獻 [1] M. Vertregt, “The Analog Challenge of Nanometer CMOS,” in Proceedings International Electron Devices Meeting (IEDM), pages 1–8, December 2006.
[2] R. Rutenbar, “Design Automation for Analog: The Next Generation of Tool Challenges,” in Proceedings IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 458–460, November 2006.
[3] D. Binkley, “Tradeoffs and Optimization in Analog CMOS Design,” in Proceedings International Conference on ixed Design of Integrated Circuits and Systems (MIXDES), pages 47–60, June 2007.
[4] R. A. Rutenbar, “Design Automation for Analog The Next Generation of Tool Challenge,” in Proceedings IBM Academy Conference, April 2006.
[5] M. Pronath, “Circuit Design for Yield with MunEDA WiCkeD,” in Proceedings MunEDA Technical Forum in Taiwan, April 2008.
[6] C.-W. Lin, P.-D. Sue, Y.-T. Shyu, and S.-J. Chang, “A Bias-Driven Approach for Automated Design of Operational Amplifiers,” in Proceedings International Symposium on VLSI Design, Automation and Test (VLSI-DAT), pages 118–121, April 2009.
[7] M. Hershenson, S. Boyd, and T. Lee, “Optimal Design of A CMOS Op-Amp Via Geometric Programming,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume 20, number 1, pages 1–21, January 2001.
[8] G. Yu and P. Li, “Hierarchical Analog/Mixed-Signal Circuit Optimization Under Process Variations and Tuning,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume 30, number 2, pages 313–317, February 2011.
[9] S. Lamont, “Automated Design For DFM/DFY,” in Proceedings IBM Academy Conference, April 2005.
[10] L. Wei, J. Deng, L.-W. Chang, K. Kim, C.-T. Chuang, and H. S. P. Wong, “Selective Device Structure Scaling and Parasitics Engineering: A Way to Extend the Technology Roadmap,” IEEE Transactions on Electron Devices, volume 56, number 2, pages 312–320, February 2009.
[11] A. Agarwal, H. Sampath, V. Yelamanchili, and R. Vemuri, “Fast and Accurate Parasitic Capacitance Models for Layout-Aware Synthesis of Analog Circuits,” in Proceedings IEEE/ACM Design Automation Conference (DAC), pages 145–150, July 2004.
[12] M. Ranjan, W. Verhaegen, A. Agarwal, H. Sampath, R. Vemuri, and G. Gielen, “Fast, Layout-Inclusive Analog Circuit Synthesis Using PreCompiled Parasitic-Aware Symbolic Performance Models,” in Proceedings IEEE Design, Automation and Test in Europe Conference and Exhibition (DATE), volume 1, pages 604–609 Vol.1, February 2004.
[13] A. Agarwal and R. Vemuri, “Layout-Aware RF Circuit Synthesis Driven by Worst Case Parasitic Corners,” in Proceedings IEEE International Conference on Computer Design: (ICCD), pages 444–449, October 2005.
[14] Z. Liu and L. Zhang, “A Performance-Constrained Template-Based Layout Retargeting Algorithm for Analog Integrated Circuits,” in Proceedings IEEE Asia and South Pacific Design Automation Conference (ASP-DAC), pages 293–298, January 2010.
[15] K. Kuhn, “Reducing Variation in Advanced Logic Technologies: Approaches to Process and Design for Manufacturability of Nanoscale CMOS,” in Proceedings IEEE International Electron Devices Meeting (IEDM), pages 471–474, December 2007.
[16] S. Nassif, K. Bernstein, D. Frank, A. Gattiker, W. Haensch, B. Ji, E. Nowak, D. Pearson, and N. Rohrer, “High Performance CMOS Variability in the 65nm Regime and Beyond,” in Proceedings IEEE International Electron Devices Meeting (IEDM), pages 569–571, December 2007.
[17] H. E. Graeb, Analog Design Centering and Sizing. Incorporated Springer Publishing Company, 2007.
[18] R. Shringarpure, S. Venugopal, L. Clark, D. Allee, and E. Bawolek, “Localization of Gate Bias Induced Threshold Voltage Degradation in aSi:H TFTs,” IEEE Electron Device Letters, volume 29, number 1, pages 93–95, January 2008.
[19] L. Po-Yuan, J.-M. Ding, J.-P. Hu, and Y.-J. Chan, “Reducing Risk in Complex System Development,” in Proceedings Display Manufacturing: Flexible Displays Technical Forum, May 2011.
[20] J. N. Burghartz, N. Wacker, M.-U. Hassan, H. Rempp, and H. Richter, “MOST Modeling for Ultra-thin Flexible Electronics,” in Proceedings MOS Modeling and Parameter Extraction Working Group, October 2009.
[21] X. Pan and H. Graeb, “Reliability Analysis of Analog Circuits Using Quadratic Lifetime Worst-Case Distance Prediction,” in Proceedings Custom Integrated Circuits Conference (CICC), pages 1–4, September 2010.
[22] C.-H. Hsu, C. Liu, E.-H. Ma, and J. C. M. Li, “Static Timing Analysis For Flexible TFT Circuits,” in Proceedings IEEE/ACM Design Automation Conference (DAC), pages 799–802, June 2010.
[23] Y.-C. Tarn, P.-C. Ku, H.-H. Hsieh, and L.-H. Lu, “An Amorphous-Silicon Operational Amplifier and Its Application to a 4-Bit Digital-to-Analog Converter,” IEEE Journal of Solid-State Circuits, volume 45, number 5, pages 1028–1035, May 2010.
[24] T.-C. Huang, J.-L. Huang, and K.-T. Cheng, “Robust Circuit Design for Flexible Electronics,” IEEE Design and Test of Computers, volume 28, number 6, pages 8–15, November 2011.
[25] T. R. Browning, “Flexible Glass Substrates for Organic TFT Active Matrix Electrophoretic Displays,” in Proceedings Synopsys Technical Forum, April 2004.
[26] H. Graeb, “ITRS 2011 Analog EDA Challenges and Approaches,” in Proceedings IEEE Design, Automation Test in Europe Conference Exhibition (DATE), pages 1150–1155, March 2012.
[27] P. Dautriche, “Analog Design Trends and Challenges in 28 and 20nm CMOS Technology,” in Proceedings IEEE European Solid-State Circuits Conference (ESSCIRC), pages 1–4, September 2011.
[28] P.-C. Pan, H.-M. Chen, Y.-K. Cheng, J. Liu, and W.-Y. Hu, “Configurable Analog Routing Methodology Via Technology and Design Constraint Unification,” in Proceedings IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 620–626, November 2012.
[29] E. Yilmaz and G. Dundar, “Analog Layout Generator for CMOS Circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume 28, number 1, pages 32–45, January 2009.
[30] S. Bhattacharya, N. Jangkrajarng, and C.-J. Shi, “Multilevel Symmetry-Constraint Generation for Retargeting Large Analog Layouts,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume 25, number 6, pages 945–960, June 2006.
[31] G. Ruan, J. Vlach, J. Barby, and A. Opal, “Analog Functional Simulator For Multilevel Systems,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume 10, number 5, pages 565–576, May 1991.
[32] J. Besnard, J. Benkoski, and B. Hennion, “Eldo-XL: A Software Accelerator For The Analysis Of Digital MOS Circuits By An Analog Simulator,” in Proceedings Design Automation. EDAC., Proceedings of the European Conference on, February 1991.
[33] S. Nyati, C. A. Wegner, R. W. Delmerico, R. J. Piwko, D. H. Baker, and A. Edris, “Effectiveness of thyristor controlled series capacitor in enhancing power system dynamics: an analog simulator study,” Power Delivery, IEEE Transactions on, volume 9, number 2, pages 1018–1027, Apr 1994.
[34] Y. Sugimoto, “A Highly Efficient Transient And Frequency-Response Simulation Method For Switching Converters Without Using A SPICE-Like Analog Simulator,” in Proceedings IEEE International Symposium on Circuits and Systems (ISCAS), pages 1308–1311, May 2010.
[35] A. Mounir, A. Mostafa, and M. Fikry, “Automatic Behavioural Model Calibration For Efficient PLL System Verification,” in Proceedings IEEE Design, Automation and Test in Europe Conference and Exhibition (DATE), pages 280–285, 2003.
[36] S. Tan, W. Guo, and Z. Qi, “Hierarchical Approach to Exact Symbolic Analysis of Large Analog Circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume 24, number 8, pages 1241–1250, August 2005.
[37] E. S. J. Martens and G. G. E. Gielen, “Analyzing Continuous-time Delta; Sigma; Modulators with Generic Behavioral Models,” Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, volume 25, number 5, pages 924–932, May 2006.
[38] C.-C. Kuo, M.-J. Lee, C.-N. Liu, and C.-J. Huang, “Fast Statistical Analysis of Process Variation Effects Using Accurate PLL Behavioral Models,” IEEE Transactions on Circuits and Systems I: Regular Papers, volume 56, number 6, pages 1160–1172, June 2009.
[39] F. Gong, S. Basir-Kazeruni, L. He, and H. Yu, “Stochastic Behavioral Modeling and Analysis for Analog/Mixed-Signal Circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume 32, number 1, pages 24–33, January 2013.
[40] F. Gong, H. Yu, Y. Shi, D. Kim, J. Ren, and L. He, “QuickYield: An efficient global-search based parametric yield estimation with performance constraints,” in Proceedings IEEE/ACM Design Automation Conference(DAC), pages 392–397, June 2010.
[41] H. Forghani-Zadeh and G. Rincon-Mora, “Fast And Reliable Top-Level Simulation Strategy For Mixed-Signal Integrated Circuits And Its Application to DC-DC Converters,” IET Circuits, Devices Systems, volume 1, number 2, pages 143–150, April 2007.
[42] C.-C. Kuo, W.-Y. Hu, Y.-H. Chen, J.-F. Kuan, and Y.-K. Cheng, “Efficient Trimmed-Sample Monte Carlo Methodology And Yield-Aware Design Flow For Analog Circuits,” in Proceedings IEEEACM Design Automation Conference (DAC), pages 1113–1118, June 2012.
[43] A. Singhee and R. Rutenbar, “From Finance to Flip Flops: A Study of Fast Quasi-Monte Carlo Methods from Computational Finance Applied to Statistical Circuit Analysis,” in Proceedings International Symposium on Quality Electronic Design (ISQED), pages 685–692, March 2007.
[44] V. Veetil, K. Chopra, D. Blaauw, and D. Sylvester, “Fast Statistical Static Timing Analysis Using Smart Monte Carlo Techniques,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume 30, number 6, pages 852–865, June 2011.
[45] J. Jaffari and M. Anis, “On Efficient LHS-Based Yield Analysis of Analog Circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume 30, number 1, pages 159–163, January 2011.
[46] Y. Wu, “Novel Method of Analog Circuit Schematic Synthesis,” in Proceedings IEEE International Conference on ASIC (ASICON), pages 1209–1212, October 2009.
[47] A. Das and R. Vemuri, “Topology Synthesis of Analog Circuits Based on Adaptively Generated Building Blocks,” in Proceedings IEEE/ACM Design Automation Conference (DAC), pages 44–49, June 2008.
[48] T. McConaghy, P. Palmers, M. Steyaert, and G. G. E. Gielen, “Trustworthy Genetic Programming-Based Synthesis of Analog Circuit Topologies Using Hierarchical Domain-Specific Building Blocks,” IEEE Transactions on Evolutionary Computation, volume 15, number 4, pages 557–570, August 2011.
[49] F. El-Turky and E. Perry, “BLADES: An Artificial Intelligence Approach to Analog Circuit Design,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume 8, number 6, pages 680–692, June 1989.
[50] J. Mahattanakul and J. Chutichatuporn, “Design Procedure for Two-Stage CMOS Opamp With Flexible Noise-Power Balancing Scheme,” IEEE Transactions on Circuits and Systems I, volume 52, number 8, pages 1508–1514, August 2005.
[51] R. Phelps, M. Krasnicki, R. Rutenbar, L. Carley, and J. Hellums, “Anaconda: Simulation-Based Synthesis of Analog Circuits Via Stochastic Pattern Search,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume 19, number 6, pages 703–717, June 2000.
[52] W. Gao and R. Hornsey, “A Power Optimization Method for CMOS Op-Amps Using Sub-Space Based Geometric Programming,” in Proceedings IEEE Design, Automation Test in Europe Conference Exhibition (DATE), pages 508–513, March 2010.
[53] P.-H. Lin, Y.-W. Chang, and S.-C. Lin, “Analog Placement Based on Symmetry-Island Formulation,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume 28, number 6, pages 791–804, June 2009.
[54] Y.-P. Weng, H.-M. Chen, T.-C. Chen, P.-C. Pan, C.-H. Chen, and W.-Z. Chen, “Fast Analog Layout Prototyping for Nanometer Design Migration,” in Proceedings IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 517–522, November 2011.
[55] P.-Y. Chou, H.-C. Ou, and Y.-W. Chang, “Heterogeneous B*-trees for analog placement with symmetry and regularity considerations,” in Proceedings IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 512–516, November 2011.
[56] L. Xiao, E. Young, X. He, and K. P. Pun, “Practical Placement and Routing Techniques for Analog Circuit Designs,” in ProceedingsIEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 675–679, November 2010.
[57] M.-K. Hsu, Y.-F. Chen, C.-C. Huang, T.-C. Chen, and Y.-W. Chang, “Routability-Driven Placement for Hierarchical Mixed-Size Circuit Designs,” in Proceedings IEEE/ACM Design Automation Conference(DAC), pages 1–6, May 2013.
[58] R. Wilcox, T. Forhan, G. Starkey, and D. Turner, “Design for Manufacturability: A Key to Semiconductor Manufacturing Excellence,” in Proceedings IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop, pages 308–313, September 1998.
[59] M. Buhler, J. Koehl, J. Bickford, J. Hibbeler, U. Schlichtmann, R. Sommer, M. Pronath, and A. Ripp, “DATE 2006 Special Session: DFM/DFY Design for Manufacturability and Yield - Influence of Process Variations in Digital, Analog and Mixed-Signal Circuit Design,” in Proceedings IEEE Design, Automation and Test in Europe (DATE), pages 1–6,March 2006.
[60] M. Mounir Mahmoud, N. Soin, and H. Fahmy, “Design Framework to Overcome Aging Degradation of the 16nm VLSI Technology Circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume 33, number 5, pages 691–703, May 2014.
[61] G. Zhang, A. Dengi, R. Rohrer, R. Rutenbar, and L. Carley, “A Synthesis Flow toward Fast Parasitic Closure for Radio-Frequency Integrated Circuits,” in Proceedings IEEE/ACM Design Automation Conference (DAC), pages 155–158, July 2004.
[62] R. Castro-Lopez, O. Guerra, E. Roca, and F. Fernandez, “An Integrated Layout-Synthesis Approach for Analog ICs,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume 27, number 7, pages 1179–1189, July 2008.
[63] H. Habal and H. Graeb, “Constraint-Based Layout-Driven Sizing of Analog Circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume 30, number 8, pages 1089–1102,August 2011.
[64] M. Webb and H. Tang, “Analog Design Retargeting by Design Knowledge Reuse and Circuit Synthesis,” in Proceedings IEEE International Symposium on Circuits and Systems (ISCAS), pages 892–895, May 2008.
[65] L. Zhang, N. Jangkrajarng, S. Bhattacharya, and C.-J. Shi, “Parasitic-Aware Optimization and Retargeting of Analog Layouts: A Symbolic-Template Approach,” IEEE Transactions on Computer-Aided Design ofIntegrated Circuits and Systems, volume 27, number 5, pages 791–802, May 2008.
[66] P. Stolk, F. Widdershoven, and D. Klaassen, “Modeling Statistical Dopant Fluctuations in MOS Transistors,” IEEE Transactions on Electron Devices, volume 45, number 9, pages 1960–1971, September 1998.
[67] G. Stehr, M. Pronath, F. Schenkel, H. Graeb, and K. Antreich, “Initial Sizing of Analog Integrated Circuits by Centering Within Topology-Given Implicit Specifications,” in Proceedings IEEE/ACM International Conference on Computer Aided Design (ICCAD), pages 241–246, November 2003.
[68] R. Schwencker, F. Schenkel, M. Pronath, and H. Graeb, “Analog Circuit Sizing Using Adaptive Worst-Case Parameter Sets,” in Proceedings IEEE Design, Automation and Test in Europe Conference and Exhibition (DATE), pages 581–585, March 2002.
[69] T. McConaghy and G. G. E. Gielen, “Globally Reliable Variation-Aware Sizing of Analog Integrated Circuits via Response Surfaces and Structural Homotopy,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume 28, number 11, pages 1627–1640, November 2009.
[70] B. Liu, F. Fernandez, and G. G. E. Gielen, “Efficient and Accurate Statistical Analog Yield Optimization and Variation-Aware Circuit Sizing Based on Computational Intelligence Techniques,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume 30, number 6, pages 793–805, June 2011.
[71] S. Deyati and P. Mandal, “An Automated Design Methodology for Yield Aware Analog Circuit Synthesis in Submicron Technology,” in Proceedings International Symposium on Quality Electronic Design (ISQED), pages 1–7, March 2011.
[72] G. Stehr, H. Graeb, and K. Antreich, “Analog Performance Space Exploration by Normal-Boundary Intersection and by Fourier-Motzkin Elimination,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume 26, number 10, pages 1733–1748, October 2007.
[73] T. Eeckelaert, T. McConaghy, and G. Gielen, “Efficient Multiobjective Synthesis of Analog Circuits Using Hierarchical Pareto-Optimal Performance Hypersurfaces,” in Proceedings IEEE Design, Automation and Test in Europe (DATE), pages 1070–1075 Vol. 2, March 2005.
[74] B. De Smedt and G. G. E. Gielen, “WATSON: Design Space Boundary Exploration and Model Generation for Analog and RFIC Design,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume 22, number 2, pages 213–224, February 2003.
[75] S. Tiwary, P. Tiwary, and R. Rutenbar, “Generation of Yield-Aware Pareto Surfaces For Hierarchical Circuit Design Space Exploration,” in Proceedings IEEE/ACM Design Automation Conference (DAC), pages 31–36, July 2006.
[76] G. Yu and P. Li, “Yield-Aware Analog Integrated Circuit Optimization Using Geostatistics Motivated Performance Modeling,” in Proceedings IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 464–469, November 2007.
[77] E. Maricau and G. Gielen, “Efficient Variability-Aware NBTI and Hot Carrier Circuit Reliability Analysis,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume 29, number 12, pages 1884–1893, December 2010.
[78] D. Schroder and J. Babcock, “Negative Bias Temperature Instability: Road to Cross in Deep Submicron Silicon Semiconductor Manufacturing,” Journal of Applied Physics, volume 94, number 1, pages 1–18, July 2003.
[79] G. Gielen, E. Maricau, and P. De Wit, “Analog Circuit Reliability in Sub-32 Nanometer CMOS: Analysis And Mitigation,” in Proceedings IEEE Design, Automation Test in Europe Conference Exhibition (DATE), pages 1–6, March 2011.
[80] E. Maricau, D. De Jonghe, and G. Gielen, “Hierarchical Analog Circuit Reliability Analysis Using Multivariate Nonlinear Regression and Active Learning Sample Selection,” in Proceedings IEEE Design, Automation Test in Europe Conference Exhibition (DATE), pages 745–750, March 2012.
[81] K. Antreich, J. Eckmueller, H. Graeb, M. Pronath, F. Eschenkel, R. Schwencker, and S. Zizala, “WiCkeD: Analog Circuit Synthesis Incorporating Mismatch,” in Proceedings Custom Integrated Circuits Conference (CICC), pages 511–514, May 2000.
[82] Y.-F. Cheng, L.-Y. Chan, Y.-L. Chen, Y.-C. Liao, and C.-N. Liu, “A Bias-Driven Approach to Improve The Efficiency of Automatic Design Optimization for CMOS OP-Amps,” in Proceedings Asia Symposium on Quality Electronic Design (ASQED), pages 59–63, July 2012.
[83] Y.-L. Chen, W.-R. Wu, H.-H. Tseng, and C.-N. J. Liu, “Efficient Yield-Optimized Sizing Approach for the Analog Circuits with Flexible TFTs,” in Proceedings VLSI Design/CAD Symposium, August 2012.
[84] Y.-L. Chen, Y.-F. Cheng, L.-Y. Chan, G.-R. Lu, and C.-N. J. Liu, “A Bias-Driven Approach for Efficient Analog Design Automation,” in Proceedings VLSI Design/CAD Symposium, August 2012.
[85] Y.-L. Chen and C.-N. J. Liu, "A Unified Analog Synthesis Approach Considering Parasitic Effects and Process Variations," to be published on Performance Optimization Techniques in Analog, Mixed-Signal, and Radio-Frequency Circuit Design, IGI Global, 2014.
[86] Y.-C. Liao, Y.-L. Chen, X.-T. Cai, C.-N. Liu, and T.-C. Chen, “LASER: Layout-aware Analog Synthesis Environment on Laker,” in Proceedings ACM International Conference on Great Lakes Symposium on VLSI(GLSVLSI), pages 107–112, May 2013.
[87] Y.-L. Chen, Y.-C. Ding, Y.-C. Liao, H.-J. Chang, and C.-N. Liu, “A Layout-Aware Automatic Sizing Approach for Retargeting Analog Integrated Circuits,” in Proceedings International Symposium on VLSI Design, Automation, and Test (VLSI-DAT), pages 1–4, April 2013.
[88] Y.-L. Chen, Y.-C. Ding, Y.-J. Lin, and C.-N. J. Liu, “Efficient Yield-Optimized Sizing Approach for Analog Circuits with Accurate Variation Consideration,” in Proceedings IEEE International Workshop on Designfor Manufacturability and Yield (DFMY), June 2012.
[89] Y.-L. Chen, W.-R. Wu, G.-R. Lu, and C.-N. J. Liu, “Automatic Circuit Sizing Technique for the Analog Circuits with Flexible TFTs Considering Process Variation and Bending Effects,” in Proceedings IEEE Design, Automation Test in Europe Conference Exhibition (DATE), pages 1458–1461, March 2013.
[90] Y.-L. Chen, G.-M. Chu, Y.-C. Lien, C.-M. Lee, and C.-N. Liu, “Simultaneous Optimization for Low Dropout Regulator and Its Error Amplifier with Process Variation,” in Proceedings International Symposium on VLSI Design, Automation and Test (VLSI-DAT), pages 1–4, April 2014.
[91] Y.-L. Chen, W.-R. Wu, C.-N. Liu, and J.-M. Li, “Simultaneous Optimization of Analog Circuits With Reliability and Variability for Applications on Flexible Electronics,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume 33, number 1, pages 24–35, January 2014.
[92] G. Van der Plas, G. Debyser, F. Leyn, K. Lampaert, J. Vandenbussche, G. G. E. Gielen, W. Sansen, P. Veselinovic, and D. Leenarts, “AMGIEA Synthesis Environment For CMOS Analog Integrated Circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume 20, number 9, pages 1037–1058, September 2001.
[93] S. Deyati and P. Mandal, “An Automated Design Methodology For Yield Aware Analog Circuit Synthesis in Submicron Technology,” in Proceedings International Symposium on Quality Electronic Design (ISQED), pages 1–7, March 2011.
[94] S. Maji and P. Mandal, “A Fast Equation Free Iterative Approach to Analog Circuit Sizing,” in Proceedings International Conference on VLSI Design (VLSID), pages 370–375, January 2012.
[95] A. Singh, K. Ragab, M. Lok, C. Caramanis, and M. Orshansky, “Predictable Equation-Based Analog Optimization Based on Explicit Capture of Modeling Error Statistics,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume 31, number 10, pages 1485–1498, October 2012.
[96] F. Silveira, D. Flandre, and P. G. A. Jespers, “A gm/ID Based Methodology for The Design of CMOS Analog Circuits and Its Application to The Synthesis of A Silicon-On-Insulator Micropower OTA,” IEEE Journal of Solid-State Circuits, volume 31, number 9, pages 1314–1319, September, 1996.
[97] P. Mandal and V. Visvanathan, “CMOS Op-Amp Sizing Using A Geometric Programming Formulation,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume 20, number 1, pages 22–38, January 2001.
[98] Y. Li and V. Stojanovic, “Yield-driven iterative robust circuit optimization algorithm,” in Proceedings IEEE/ACM Design Automation Conference (DAC), pages 599–604, July 2009.
[99] D. Mueller-Gritschneder and H. Graeb, “Computation of Yield-Optimized Pareto Fronts for Analog Integrated Circuit Specifications,” in Proceedings IEEE Design, Automation Test in Europe Conference Exhibition (DATE), pages 1088–1093, March 2010.
[100] S. DasGupta and P. Mandal, “An Automated Design Approach for CMOS LDO Regulators,” in Proceedings IEEE Asia and South Pacific Design Automation Conference (ASP-DAC), pages 510–515, January, 2009.
[101] F. Liu and S. Ozev, “Hierarchical Analysis of Process Variation for Mixed-Signal Systems,” in Proceedings IEEE Asia and South Pacific Design Automation Conference (ASP-DAC), pages 465–470, January, 2005.
[102] K. Jain, M. Klosner, M. Zemel, and S. Raghunandan, “Flexible Electronics and Displays: High-Resolution, Roll-to-Roll, Projection Lithography and Photoablation Processing Technologies for High-Throughput Production,” Proceedings of the IEEE, volume 93, number 8, pages 1500–1510, August 2005.
[103] J. Hu, “Overview of Flexible Electronics from ITRI’s Viewpoint,” in Proceedings Proceedings VLSI Test Symposium (VTS), pages 84–84, April 2010.
[104] H. Gleskova, S. Wagner, W. Soboyejo, and Z. Suo, “Electrical Response of Amorphous Silicon Thin-Film Transistors Under Mechanical Strain,” Journal of Applied Physics, volume 92, number 10, pages 6224–6229, November 2002.
[105] W. Wong, T. Nga Ng, S. Sambandan, and M. L. Chabinyc, “Materials, Processing, and Testing of Flexible Image Sensor Arrays,” IEEE Design and Test of Computers, volume 28, number 6, pages 16–23, November, 2011.
[106] N. Karaki, T. Nanmoto, H. Ebihara, S. Utsunomiya, S. Inoue, and T. Shimoda, “A Flexible 8B Asynchronous Microprocessor Based on Low-Temperature Poly-Silicon TFT Technology,” in Proceedings IEEE International Solid-State Circuits Conference (ISSCC), pages 272–598, February 2005.
[107] R. Blache, J. Krumm, and W. Fix, “Organic CMOS Circuits for RFID Applications,” in Proceedings IEEE International Solid-State Circuits Conference (ISSCC), pages 208–209,209a, February 2009.
[108] T.-C. Huang and K.-T. Cheng, “Design for Low Power and Reliable Flexible Electronics: Self-Tunable Cell-Library Design,” Journal of Display Technology, volume 5, number 6, pages 206–215, June 2009.
[109] H. Marien, M. Steyaert, N. van Aerle, and P. Heremans, “An Analog Organic First-Order CT ADC on A Flexible Plastic Substrate with 26.5dB Precision,” in Proceedings IEEE International Solid-State Circuits Conference (ISSCC), pages 136–137, February 2010.
[110] R. Shringarpure, S. Venugopal, Z. Li, L. Clark, D. Allee, E. Bawolek, and D. Toy, “Circuit Simulation of Threshold-Voltage Degradation in aSi:H TFTs Fabricated at 175C,” IEEE Transactions on Electron Devices, volume 54, number 7, pages 1781–1783, July 2007.
[111] E. Maricau and G. Gielen, “Computer-Aided Analog Circuit Design for Reliability in Nanometer CMOS,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, volume 1, number 1, pages 50–58, March 2011.
[112] C. Bestory, F. Marc, and H. Levi, “Statistical Analysis During the Reliability Simulation,” Micro electronic Reliability, volume 47, number 9-11, pages 1353–1357, September 2007.
[113] X. Pan and H. Graeb, “Degradation-Aware Analog Design Flow for Lifetime Yield Analysis and Optimization,” in Proceedings IEEE International Conference on Electronics, Circuits, and Systems (ICECS), pages 667–670, December 2009.
[114] X. Pan and H. Graeb, “Reliability Analysis of Analog Circuits by Lifetime Yield Prediction Using Worst-Case Distance Degradation Rate,” in Proceedings International Symposium on Quality Electronic Design (ISQED), pages 861–865, March 2010.
[115] S.-E. Liu, C.-P. Kung, and J. Hou, “Estimate Threshold Voltage Shift in a-Si:H TFTs Under Increasing Bias Stress,” IEEE Transactions on Electron Devices, volume 56, number 1, pages 65–69, January 2009.
指導教授 劉建男(Chien-Nan Jimmy Liu) 審核日期 2014-10-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明