博碩士論文 101521123 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:3.135.195.91
姓名 林昱夆(Yu-Feng, Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 抗體式多孔網印碳電極用於人類血清白蛋白之感測
(Screen-printed porous carbon electrode-based immunosensor for human serum albumin detection)
相關論文
★ 電子式基因序列偵測晶片之原型★ 眼動符號表達系統之可行性研究
★ 利用網印碳電極以交流阻抗法檢測糖化血紅素★ 電子式基因序列偵測晶片可行性之研究
★ 電腦化肺音擷取系統★ 眼寫鍵盤和眼寫滑鼠
★ 眼寫電話控制系統★ 氣喘肺音監測系統之可行性研究
★ 肺音聽診系統之可行性研究★ 穿戴式腳趾彎曲角度感測裝置之可行性研究
★ 注音符號眼寫系統之可行性研究★ 英文字母眼寫系統之可行性研究
★ 數位聽診器之原型★ 使用角度變化率為基準之心電訊號壓縮法
★ 電子式基因微陣列晶片與應用電路研究★ 電子聽診系統應用於左右肺部比較之臨床研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 人類血清白蛋白是人類體內運送物質重要的蛋白質,並維持體內的滲透壓和緩衝血液中pH值。在健康的腎臟中,人類血清白蛋白不會排出體外到尿液中。但在某些腎臟病中,一旦腎臟出了狀況會導致尿液中出現白蛋白的成分。所以在人體尿液中的人類血清白蛋白濃度是一個診斷腎功能的一個重要指標。一般的人類血清白蛋白感測電極是由鉑或金製作而成,這些金屬非常的昂貴,而且難以製造。本研究利用網版印刷技術搭配表面粗糙化技術,建構出一種多孔指叉碳電極,用於人類血清白蛋白感測。透過在網印碳漿中均勻混合碳酸鈣(CaCO3)粉末和硬酯酸(Stearic acid),並且以鹽酸溶解碳酸鈣粉末,在電極表面製作出許多細微孔洞,增加電極的檢測表面積,並增強其量測電流響應,以及創造羧基於電極表面上,使抗體得以固定在電極表面上。本研究利用計時伏安法(chronoamperometry),量測電極的電化學響應。根據實驗結果顯示,電極在純系統溶液的人類血清白蛋白量測中,有著廣大的線性量測區間,為10 ~ 300 mg/L,R2=0.99812。涵蓋了人體尿液正常到微量蛋白尿的量測範圍。電極也有1.68 μA mg-1 mL的優良靈敏度。透過表面粗糙化的方法,也使電極在純系統量測下無論在靈敏度和線性區間上,相較於傳統網印碳電極,皆有所提升。電極同時在含有人類尿液中的各種干擾物質的樣本接受測試,實驗結果也顯示以計時伏安法量測的電極,受到干擾物影響造成的量測偏差皆小於5%。最後在實際的人體樣本檢驗中,和臨床的檢驗方法也有著良好的相關性,檢測濃度100 mg/L以下的HSA誤差小於16%,檢測濃度大於100 mg/L以上的HAS誤差皆小於9%。透過這種電極,提高了網印碳電極在人類血清白蛋白的感測效能,也為人類血清白蛋白診斷提供了一個更加便宜方便的選擇。
摘要(英) Human serum albumin is the most abundant protein in human blood plasma. Albumin transports hormones, fatty acids, and other compounds, buffers pH, and maintains osmotic pressure. When the kidneys are working properly, albumin is not present in the urine. But when the kidneys are damaged, trace amount of albumin leaks into the urine, called albuminuria. If early kidney damage is not treated, large amount of albumin may leak into the urine and this can lead to chronic kidney disease (CKD). Therefore, the concentration of human serum albumin in human urine is an important indicator of a diagnosis of renal function. The clinical detection method of particle-enhanced turbidimetric inhibition immunoassay (PETINIA) instrument is very expensive. We want to create a low cost, easy-to-use biosensor for HSA detection to improve the modern measurement techniques. In this study, the porous carbon electrode with carboxylic surface was fabricated by screen-printing through uniform mixing of calcium carbonate (CaCO3) powder and stearic acid in the screen printing carbon paste. Then hydrochloric acid was used to dissolve the calcium carbonate powder to increase the surface area of the detection electrodes by porous structures. The obtained screen-printed porous carbon electrode (SPPCE) with carboxylic group surface was characterized by cyclic voltammetry (CV), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). CV measurement showed the enhanced current response of SPPCE. Using EDC and sulfo-NHS crosslinking, anti-HSA antibodies were immobilized on SPPCE. In this study, we used anti-HSA/EDC+sulfo-NHS/ SPPCE immunosensor to measure HSA by chronoamperometry (CA) electrochemical technique. The electrochemical measurements of the urine samples with interferences demonstrated a high specificity and selectivity of this biosensor in detecting has. The Scanning Electron Microscope/Energy Dispersive Spectrometer (SEM/EDS) mapping was used to check every immobilization step. In optimal conditions, the immunosensor could detect HSA in a high linear range from 10 to 300 mg/L with a 1.68 μA mg-1 mL sensitivity. The calibration curve equation isI=2.10514-0.00175[HSA(mg/L)] with a high coefficient of determination (R2 = 0.99703). Finally, SPPCE based immunosensor was used to measure HSA in clinical urine samples from hospital. Measurement results showed a good correlation with clinical turbidimetric testing and error values were less than 12%. These results suggest that the HSA immunosensor is user-friendly, reliable, and highly specific for the detection of urinary albumin at the range of microalbuminuria.
關鍵字(中) ★ 網印電極
★ 多孔結構
★ 人類血清白蛋白
★ 硬指酸
★ 循環伏安法
關鍵字(英) ★ Screen-printing
★ Porous
★ Human serum albumin
★ Stearic acid
★ Cyclic voltammetry
論文目次 中文摘要 VII
Abstract IX
致謝 XI
Table of content XII
List of figures XIV
List of tables XXV
1. Introduction 1
1.1. Human serum albumin 1
1.2. Kidney physiology 2
1.3. Chronic kidney disease (CKD) 4
1.4. Proteinuria 5
1.5. Proteinuria detection 7
2. Literature Review 9
2.1. Biosensors 9
2.2. Electrochemical sensors measuring methods 25
2.3. Electrode surface-modification methods 29
2.4. Surface roughening 45
3. Research Motivation 50
4. Materials and methods 51
4.1. Electrode fabrication 51
4.2. Fabrication of carbon interdigitated electrode with carboxylic group surface and porous surface 73
4.3. Immobilization of anti-HSA antibody on stearic acid modified carbon electrode surface 86
4.4. Human serum albumin measurement under the pure solvent system and with interference 90
4.5. Human serum albumin measurement in human urine sample 96
5. Experimental results 99
5.1. Sensor characterization 99
5.2. Fabrication of carbon interdigitated electrode with carboxylic group surface and porous surface 119
5.3. Immobilization of anti-HSA antibody on stearic acid modified carbon electrode surface 162
5.4. Human serum albumin measurement under the pure solvent and with interference 175
5.5. Human serum albumin detection in clinical urine samples 199
6. Conclusion 205
7. Future work 207
8. References 208
參考文獻 [1]. Yeggoni, D.P., et al., Binding and molecular dynamics studies of 7-hydroxycoumarin derivatives with human serum albumin and its pharmacological importance. Mol Pharm, 2014. 11(4): p. 1117-31.
[2]. 薛凱鴻, 阻抗式生物感測器應用於人類白蛋白檢測之研究. 國立中央大學電機系碩士論文, 民國97年7月.
[3]. Basi, S., et al., Microalbuminuria in type 2 diabetes and hypertension: a marker, treatment target, or innocent bystander? Diabetes Care, 2008. 31 Suppl 2: p. S194-201.
[4]. WAQAR KASHIF, N.S., H. ERHAN DINCER, AYSE P. DINCER, SHELDON HIRSCH, Proteinuria: How to evaluate an important finding. CLEVELAND CLINIC JOURNAL OF MEDICINE, 2003. 70: p. 20-23.
[5]. Kuila, T., et al., Recent advances in graphene-based biosensors. Biosens Bioelectron, 2011. 26(12): p. 4637-48.
[6]. Tatsuo AKIYAMP, E.N., Ion-sensitive field-effect transistor for pK and pNa sensing. Pure & Appl. Chem., 1987. 59: p. 535-538.
[7]. Cheng, S., et al., Field Effect Transistor Biosensor Using Antigen Binding Fragment for Detecting Tumor Marker in Human Serum. Materials, 2014. 7(4): p. 2490-2500.
[8]. Dey, D. and T. Goswami, Optical biosensors: a revolution towards quantum nanoscale electronics device fabrication. J Biomed Biotechnol, 2011. 2011: p. 348218.
[9]. Tu, M.C., et al., A quantum dot-based optical immunosensor for human serum albumin detection. Biosens Bioelectron, 2012. 34(1): p. 286-90.
[10]. Dorothee Grieshaber, R.M., Janos V¨or¨os and Erik Reimhult, Electrochemical Biosensors - Sensor Principles and Architectures. sensors, 2008. 8: p. 1400-1458.
[11]. Makoto Muratsugu, F.O., Yoshihiro Miya, Toshiaki Hosokawa, Shigeru Kurosawa, Naoki Kamo, and Hisami Ikeda, Quartz Crystal Microbalance for the Detection of Microgram Quantities of Human Serum Albumin: Relationship between the Frequency Change and the Mass of Protein Adsorbed. Anel. Chem, 1993. 65: p. 2933-2937.
[12]. Sassolas, A., L.J. Blum, and B.D. Leca-Bouvier, Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv, 2012. 30(3): p. 489-511.
[13]. Batista-Viera, B.M.B.a.F., Immobilization of Enzymes. Brena and Batista-Viera, 2006: p. 15-32.
[14]. Chuang, M.-C., C.-C. Liu, and M.-C. Yang, An electrochemical tyrosinase-immobilized biosensor for albumin—toward a potential total protein measurement. Sensors and Actuators B: Chemical, 2006. 114(1): p. 357-363.
[15]. Wang, P., et al., Cell-based biosensors and its application in biomedicine. Sensors and Actuators B: Chemical, 2005. 108(1-2): p. 576-584.
[16]. He, L., et al., A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET). Cytometry A, 2003. 55(2): p. 71-85.
[17]. Ziegler, C., Cell-based biosensors. Fresenius J Anal Chem, 2000. 366: p. 552-559.
[18]. Peter B. Luppa, L.J.S., Daniel W. Chan, Immunosensors—principles and applications to clinical chemistry. Clinica Chimica Acta, 2001. 314: p. 1-26.
[19]. Eun Ju Kim, T.H., Yasuko Yanagida, Eiry Kobatake, Masuo Aizawa, Disposable creatinine sensor based on thick-film hydrogen peroxide electrode system. Analytica Chimica Acta, 1999. 394: p. 225-231.
[20]. Caballero, D., et al., Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface. Anal Chim Acta, 2012. 720: p. 43-8.
[21]. 周淑芬, 陳., 免疫感測器之技術發展及其應用. CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI), 2001. 59: p. 263-271.
[22]. Basics of Electrochemical Impedance Spectroscopy. Gamry Instruments, 2010.
[23]. Ohno, R., et al., Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A. Biosens Bioelectron, 2013. 40(1): p. 422-6.
[24]. Andrienko, D., Cyclic Voltammetry. January 22, 2008.
[25]. Orjan G. Martinsen , S.G., Bioimpedance and Bioelectricity Basics, Second Edition. Academic Press, 2008.
[26]. Buddy D. Ratner and Allan S. Hoffman, F.J.S., Jack E. Lemons, BlOMATERIALS SCIENCE An Introduction to Materials in Medicine. Academic Press, 1996: p. 124-130.
[27]. Ronkainen, N.J., H.B. Halsall, and W.R. Heineman, Electrochemical biosensors. Chem Soc Rev, 2010. 39(5): p. 1747-63.
[28]. Heli, H., et al., Adsorption of human serum albumin onto glassy carbon surface – Applied to albumin-modified electrode: Mode of protein–ligand interactions. Journal of Electroanalytical Chemistry, 2007. 610(1): p. 67-74.
[29]. A. Kassab, H.Y., M. Odabas¸i, A. Denizli, Human serum albumin chromatography by Cibacron Blue F3GAderived microporous polyamide hollow-fiber affinity membranes. Journal of Chromatography B, 2000. 746: p. 123-132.
[30]. Antiohos, D., et al., Electrochemical investigation of carbon nanotube nanoweb architecture in biological media. Electrochemistry Communications, 2010. 12(11): p. 1471-1474.
[31]. Hennessey, H., et al., Electrochemical investigations of the interaction of C-reactive protein (CRP) with a CRP antibody chemically immobilized on a gold surface. Anal Chim Acta, 2009. 643(1-2): p. 45-53.
[32]. Ulman, A., Formation and Structure of Self-Assembled Monolayers. Chem. Rev., 1996. 96: p. 1533-1554.
[33]. Xu, C., et al., A study of adsorption behavior of human serum albumin and ovalbumin on hydroxyapatite/chitosan composite. Colloids Surf B Biointerfaces, 2009. 73(2): p. 360-4.
[34]. Seu, K.J., et al., Effect of surface treatment on diffusion and domain formation in supported lipid bilayers. Biophys J, 2007. 92(7): p. 2445-50.
[35]. Yilmaz, O., et al., Chitosan-ferrocene film as a platform for flow injection analysis applications of glucose oxidase and Gluconobacter oxydans biosensors. Colloids Surf B Biointerfaces, 2012. 100: p. 62-8.
[36]. Wang, Q., et al., Hybridization biosensor based on the covalent immobilization of probe DNA on chitosan–mutiwalled carbon nanotubes nanocomposite by using glutaraldehyde as an arm linker. Sensors and Actuators B: Chemical, 2011. 156(2): p. 599-605.
[37]. Bertucci, C. and S. Cimitan, Rapid screening of small ligand affinity to human serum albumin by an optical biosensor. Journal of Pharmaceutical and Biomedical Analysis, 2003. 32(4-5): p. 707-714.
[38]. Kara, P., et al., Aptamers based electrochemical biosensor for protein detection using carbon nanotubes platforms. Biosens Bioelectron, 2010. 26(4): p. 1715-8.
[39]. Dong, J., et al., A label-free electrochemical impedance immunosensor based on AuNPs/PAMAM-MWCNT-Chi nanocomposite modified glassy carbon electrode for detection of Salmonella typhimurium in milk. Food Chem, 2013. 141(3): p. 1980-6.
[40]. Yang, H., et al., Detection and discrimination of alpha-fetoprotein with a label-free electrochemical impedance spectroscopy biosensor array based on lectin functionalized carbon nanotubes. Talanta, 2013. 111: p. 62-8.
[41]. Zhao, G., X. Zhan, and W. Dou, A disposable immunosensor for Shigella flexneri based on multiwalled carbon nanotube/sodium alginate composite electrode. Anal Biochem, 2011. 408(1): p. 53-8.
[42]. Batra, B. and C.S. Pundir, An amperometric glutamate biosensor based on immobilization of glutamate oxidase onto carboxylated multiwalled carbon nanotubes/gold nanoparticles/chitosan composite film modified Au electrode. Biosens Bioelectron, 2013. 47: p. 496-501.
[43]. Serafin, V., et al., Electrochemical immunosensor for the determination of insulin-like growth factor-1 using electrodes modified with carbon nanotubes-poly(pyrrole propionic acid) hybrids. Biosens Bioelectron, 2014. 52: p. 98-104.
[44]. Updegrove, T.B., et al., The stoichiometry of the Escherichia coli Hfq protein bound to RNA. RNA, 2011. 17(3): p. 489-500.
[45]. Jurczakowski, R., C. Hitz, and A. Lasia, Impedance of porous Au based electrodes. Journal of Electroanalytical Chemistry, 2004. 572(2): p. 355-366.
[46]. Ramulu, T.S., et al., Nanowires array modified electrode for enhanced electrochemical detection of nucleic acid. Biosens Bioelectron, 2013. 40(1): p. 258-64.
[47]. Niu, X., et al., Porous screen-printed carbon electrode. Electrochemistry Communications, 2012. 22: p. 170-173.
[48]. comparisons, I., International comparisons. USRDS ANNUAL DATA REPORT, 2013. 2: p. 333-344.
[49]. Peter Van Gerwen, W.L., Wim Laureys, Guido Huyberechts, Maaike Op De Beeck, Kris Baert, Jan Suls, Willy Sansen, P. Jacobs, Lou Hermans, Robert Mertens, Nanoscaled interdigitated electrode arrays for biochemical sensors. Sensors and Actuators B, 1998. 49: p. 73-80.
[50]. HASHEMI, S., Temperature and deformation rate dependence of the work of fracture in polycarbonate (PC) film. JOURNAL OF MATERIALS SCIENCE, 2000. 35: p. 5851-5856.
[51]. 碳漿SC-1010技術資料. 愛迪克科技股份有限公司.
[52]. Ligaj, M., et al., Covalent attachment of single-stranded DNA to carbon paste electrode modified by activated carboxyl groups. Electrochimica Acta, 2006. 51(24): p. 5193-5198.
[53]. 鄭燕琴, 田口品質工程技術理論與實務. 1993, 中華民國品質管制學會.
[54]. Ho, J.A., et al., Ultrasensitive electrochemical detection of biotin using electrically addressable site-oriented antibody immobilization approach via aminophenyl boronic acid. Biosens Bioelectron, 2010. 26(3): p. 1021-7.
[55]. MONOCLONAL ANTI-HUMAN SERUM ALBUMIN CLONE HSA-9 Mouse Ascites Fluid DATA SHEET.
[56]. Putnam, D.F., Composition and Concentrative Properties of Human Urine. MCDONNELL DOUGLAS ASTRONAUTICS COMPANY, 1971.
[57]. Omidfar, K., et al., Development of urinary albumin immunosensor based on colloidal AuNP and PVA. Biosens Bioelectron, 2011. 26(10): p. 4177-83.
[58]. Ghamouss, F., et al., Argon plasma treatment to enhance the electrochemical reactivity of screen-printed carbon surfaces. Electrochimica Acta, 2009. 54(11): p. 3026-3032.
[59]. Zou, Z., et al., Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement. Sensors and Actuators A: Physical, 2007. 136(2): p. 518-526.
[60]. Rana, S., R.H. Page, and C.J. McNeil, Impedance spectra analysis to characterize interdigitated electrodes as electrochemical sensors. Electrochimica Acta, 2011. 56(24): p. 8559-8563.
[61]. Wu, T., Y. Pan, and L. Li, Study on superhydrophobic hybrids fabricated from multiwalled carbon nanotubes and stearic acid. Journal of Colloid and Interface Science, 2010. 348(1): p. 265-270.
[62]. Gelbert, M.B. and D.J. Curran, Alternating Current Voltammetry of Dopamine and Ascorbic Acid at Carbon Paste and Stearic Acid Modified Carbon Paste Electrodes. American Chemical Society, 1986. 58: p. 1028-1032.
[63]. I. M. Vlasova, A.M.S., STUDY OF THE DENATURATION OF HUMAN SERUM ALBUMIN BY SODIUM DODECYL SULFATE USING THE INTRINSIC FLUORESCENCE OF ALBUMIN. Journal of Applied Spectroscopy, 2009. 76(4): p. 536-541.
[64]. Liao, H.M., Surface composition of AlN powders studied by x-ray photoelectron spectroscopy and bremsstrahlung-excited Auger electron spectroscopy. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1993. 11(5): p. 2681.
[65]. W. Kowbel, C.H.S., The Mechanism of Fiber-Matrix Interactions In Carbon-Carbon Composites. Carbon, 1990. 28(2-3): p. 287-299.
[66]. Jones, C., The effect of low power plasmas on carbon fibre surfaces. Carbon, 1990. 28(4): p. 509-514.
[67]. Barr, T.L., Recent advances in x-ray photoelectron spectroscopy studies of oxides. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1991. 9(3): p. 1793.
[68]. MAEDA H., Y.Y., YOSHIDA M., OHMORI H., Voltammetric behaviors of dopamine and ascorbic acid at a glassy carbon electrode anodized in 1,ω-alkenediol. Vol. 11. 1995, Tokyo, JAPON: Japan Society for Analytical Chemistry.
[69]. Joseph Wang, Analytical Electrochemistry , John Wiley & Sons, 2006
指導教授 蔡章仁(Jang-Zern Tsai) 審核日期 2014-10-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明