博碩士論文 88226012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.138.116.20
姓名 馬先禮(Hsien-Li Ma)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 雙向混合DWDM系統架構在80-km LEAF上傳送CATV和OC-48信號
(A Bidirectional Hybrid DWDM System for CATV and OC-48 Trunking)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ P型氮化鎵歐姆接觸製作研究
★ 應用聚對位苯基乙烯高分子材料製作有機發光二極體★ 氮離子佈植於氮化鎵之特性研究
★ 磷化銦鋁鎵/砷化鎵/砷化銦鎵對稱型平面摻雜場效電晶體研究★ 1550 nm 直調式光纖有線電視長距離傳輸系統
★ 以保角映射法為基礎之等效波導理論:理想光波導之設計與分析★ 銦鋅氧化膜基本特性及其與氮化鎵接觸應用之研究
★ 氮化鎵藍色發光二極體透明電極之製作與研究★ 透明導電膜與氮化鎵接觸特性研究
★ 連續時間電流式濾波與振盪電路設計與合成★ 氮化鋁鎵/氮化鎵異質接面金屬-半導體-金屬光檢測器之研究
★ 陣列波導光柵波長多工器設計與分析★ 室溫沈積高穩定性之氮化矽薄膜及其光激發光譜研究
★ N型氮化鎵MOS元件之製作與研究★ 矽離子佈植於p型氮化鎵之特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文中,主要研究方向在於利用雙向傳輸及高密度分波多工 (DWDM) 技術,所架構而成的外調式光纖有線電視 (CATV) 長距離傳輸系統,不僅系統傳輸容量倍增,而且測得相當優異的電視系統性能參數。首先,將此系統架構的傳輸媒介用標準單模光纖 (SMF)、TWF及大有效截面積光纖 (LEAF) 相互作比較,當光信號經80公里大有效截面積光纖傳送後,於信號接收端由解多工器分出並測得良好的系統參數特性:載波雜訊比(CNR≧50 dB)、載波二次合成拍差比(CSO≧68 dB)和載波三次合成拍差比(CTB≧64 dB)。
接著我們研究利用四個不同波長的高密度分波多工系統,架構在 4公里多模光纖 (MMF) 上傳送256-QAM數位信號。首先利用多頻道信號產生器,產生252個未經調變的射頻信號源,透過這4公里多模光纖的高密度分波多工系統搭配次載波技術傳送256-QAM數位信號,此系統其傳輸容量可達到10 Gbit/s。若將其應用在Gigabit Ethernet 中,因其具有高速資料傳遞的優點,所以在網路快速需求發展的環境裡,想必會非常引人注目。
再則進一步以四個不同波長建構雙向混合高密度分波多工系統,用來作為有線電視和OC-48信號的傳輸中繼,其中兩個波長傳送有線電視類比信號,另外兩個波長則用來傳送數位基頻信號。不僅系統傳輸容量倍增,而且在經由 80公里大有效截面積光纖傳送後,結果可知傳送數位信號並未造成任何通信品質的劣化,且在接收端測得相當優異的系統參數特性:載波雜訊比≧50 dB、載波二次合成拍差比≧65 dB、載波三次合成拍差比≧63 dB和很低的數位信號誤碼率。
最後,利用雙向光纖有線電視網路系統的架構 : 下行頻段:50 ~ 750 MHz、上行頻段:5 ~ 42 MHz。若利用此有線電視分佈網路作為網際網路(Internet) 的接取,則由實驗結果可顯示出,上行雜訊的累積與時間相關,這是網路系統設計者不可控制的因素。然而可更進一步研究得知,並不是所有上行頻率 (5 ~ 42 MHz) 均可用作雙向通訊服務,僅在 25 MHz頻段以上是比較適合用在雙向服務。
摘要(英) Abort
關鍵字(中) ★ 大有效截面積光纖
★ 載波三次合成拍差比
★ 載波二次合成拍差比
★ 載波雜訊比
★ 高密度分波多工器
★ 次載波多工
★ 調幅殘波帶調變
關鍵字(英) ★ AM-VSB
★ SCM
★ LEAF
★ CTB
★ CSO
★ CNR
★ DWDM
論文目次 論 文 摘 要.......................................................I
目 錄...........................................................IV
圖 表 索 引.......................................................VI
第一章 前 言..................................................1
第二章 有線電視雙向傳輸系統.....................................9
2-1 導論.................................................9
2-2 實驗架構.............................................10
2-3 實驗結果及討論.......................................13
2-4 結論.................................................18
第三章 高密度分波多工系統搭配次載波多工技術架構在4公里多模光纖上傳送256-QAM信
號.......................................................19
3-1 導論.................................................19
3-2 實驗架構.............................................20
3-3 實驗結果和討論.......................................22
3-4 結論.................................................24
第四章 雙向混合高密度分波多工系統架構在80公里大有效截面積光纖上傳送CATV和
OC-48信號...............................................25
4-1 導論.................................................25
4-2 實驗架構.............................................27
4-3 實驗結果及討論.......................................29
4-4 結論.................................................32
第五章 以光纖有線電視網路同時傳送有線電視與網際網路信號.........34
5-1 導論.................................................34
5-2 上行入侵雜訊的分析...................................35
5-3 實驗架構.............................................37
5-4 實驗結果及討論.......................................38
5-5 結論.................................................40
第六章 結 論...................................................42
參 考 文 獻.......................................................66
著 作...........................................................73
參考文獻 第一章
[1.1] Yoshimura, H.; Sato, K.-I.; Takachio, N ” Future photonic transport networks based on WDM technologies”;IEEE Communication Magazine 2 (1999) 37,74-81.
[1.2] M. R. Philips, T. E. Darcie, D. Marcuse, G. E. Bodeep, N. J. Frigo: “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals” ; IEEE Photon. Technol. Lett. 3 (1991) 5, 481-483.
[1.3] H. Dai, S. Ovadia, and C. Lin,”Hybrid AM-VSB/M-QAM multichannel video transmission over 120 km of standard single-mode fiber with cascade erbium-doped fiber amplifiers”; IEEE Photon. Technol. Lett. 8 (1996) 12, 1713-1715.
[1.4] S. Ovadia, and C. Lin,”Performance characteristics and application of hybrid multichannel AM/M-QAM video lightwave transmission systems”; J. Lightwave Technol. 16 (1998), 1171-1186.
[1.5] J. H Su, C. C Lee,W. Y. Guo,F. Y. Tsai, C. S. Wang, Y. K. Tu, and Y. K. Chen,”Composite-second-order improvement of 15 dB in an optically amplified 110-km AM-VSB CATV transport system using chirped fiber grating”; in Tech Dig OFC’99, San Diego, CA 1999, paper TuP2.
[1.6] J. Haugen, J. Freeman, and J. Conradi,”Bidirectional transmission at 622 Mb/s utilizing erbium-doped fiber amplifiers”; IEEE Photon. Technol. Lett. PTL-4 (1992) 8, 913-916.
[1.7] K. Kannan and S. Frisken, “Unrepeatered bidirectional transmission system over a single fiber using optical fiber amplifiers”; IEEE Photon. Technol. Lett. 5 (1993) 1, 76-79.
[1.8] Y. K. Chen, W. Y. Guo, S. Chi, and W. I. Way,”Demonstration of in- service supervisory repeaterless bidirectional WDM transmission system”; IEEE Photon. Technol. Lett. 7 (1995) 9, 1084-1086.
[1.9] H. H. Lu, H. L. Ma, and C. T. Lee,”Bidirectional transport of AM-VSB CATV system”; J. Opt. Commun. 23 (2002) 1, 22-25.
[1.10] H. H. Lu, H. L. Ma, C. S. Lee and C. T. Lee,”A DWDM system for 256-QAM transmission over 4 km multimode fiber”; Microwave and Optical Technology Lett. 33 (2002) 6, 419-421.
[1.11] H. H. Lu, H. L. Ma, and C. T. Lee,”A bi-directional hybrid DWDM system for CATV and OC-48 trunking”; IEEE Photon. Technol. Lett. 13 (2001) 8, 902-904.
[1.12] H. H. Lu, C. S. Lee, H. L. Ma, and C. T. Lee,”Up-Stream noise for the Internet access over fiber optical CATV”; Accepted, J. Opt. Commun. (2002) 6.
第二章
[2.1] K. I. Suzuki, H. Masuda, S. Kawai, K. Aida, J. Conradi: “Bidirectional 10-channel 2.5 Gbit/s WDM transmission over 250 km using 76 nm (1531-1607nm) gain-band bidirectional erbium-doped fiber amplifiers”; Electron. Lett. 33 (1997) 23, 1967-1968.
[2.2] H. H. Lu, H. L. Ma, C. S. Lee and C. T. Lee,”A DWDM system for 256-QAM transmission over 4 km multimode fiber”; Microwave and Optical Technology Lett. 33 (2002) 6, 419-421.
[2.3] “The large effective area advantage: for multi-window applications”; Corning Corporation Tech. Report (2000).
[2.4] H. H. Lu, H. L. Ma, and C. T. Lee,”A bi-directional hybrid DWDM system for CATV and OC-48 trunking”; IEEE Photon. Technol. Lett. 13 (2001) 8, 902-904.
[2.5] W. I. Way: “Broadband hybrid fiber/coax access system technologies”; Academic Press 5 (1998) 4, 154-155.
[2.6] M. R. Philips, T. E. Darcie, D. Marcuse, G. E. Bodeep, N. J. Frigo: “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals”; IEEE Photon. Technol. Lett. 3 (1991) 5, 481-483.
[2.7] K. P. Ho, S. K. Liaw: “Demultiplexer crosstalk rejection requirements for hybrid WDM system with analog and digital channels”; IEEE Photon. Technol. Lett. 10 (1998) 5, 737-739.
第三章
[3.1] H. H. Lu, H. L. Ma, and C. T. Lee,”Bidirectional transport of AM-VSB CATV system”; J. Opt. Commun. 23 (2002) 1, 22-25.
[3.2] S. Ovadia, H. Dai, C. Lin, and W. T. Anderson, “Performance of hybrid multichannel AM/256-QAM video lightwave transmission systems,” IEEE Photon. Technol. Lett. 7 (1995) 11, 1351-1353.
[3.3] M. C. Wu, J. K. Wong, K. T. Tsai, Y. L. Chen, and W. I. Way, “740-km transmission of 78-channel 64-QAM signals (2.34 Gb/s) without dispersion compensation using a recirculating loop,” IEEE Photon. Technol. Lett. 12 (2000) 9, 1255-1257.
[3.4] G. C. Papen, and G. M. Murphy, “Modal noise in multimode fibers under restricted launch conditions,” J. Lightwave Technol. 17 (1999) 5, 817-822.
[3.5] T. E. Darcie, G. E. Bodeep, and A. A. M. Saleh, “Fiber-reflection-induced impairments in lightwave AM-VSB CATV systems,” J. Lightwave Technol. 9 (1991) 8, 991-995.
[3.6] M. R. Philips, T. E. Darcie, D. Marcuse, G. E. Bodeep, and N. J. Frigo, “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals,” IEEE Photon Technol Lett. 3 (1991) 5, 481-483.
[3.7] T. K. Woodward, S. Hunsche, A. J. Ritger, and J. B. Stark, “1-Gb/s BPSK transmission at 850 nm over 1 km of 62.5-μm-core multimode fiber using a single 2.5-GHz subcarrier,” IEEE Photon Technol Lett. 11 (1999) 3, 382-384.
第四章
[4.1] W. Muys, J. C. van der Plaats, F. W. Willems, and P. H. van Heijningen, “Mutual deterioration of WDM-coupled AM-CATV and digital B-ISDN services in single fiber access networks,” IEEE Photon. Technol. Lett. 5 (1993) 7, 832-834.
[4.2] K. P. Ho, H. Dai, C. Lin, S. K. Liaw, H. Gysel, and M. Ramachandran, “Hybrid wavelength-division-multiplexing systems for high-capacity digital and analog video trunking applications,” IEEE Photon. Technol. Lett. 10 (1998) 2, 297-299.
[4.3] C. C. Lee and S. Chi, “Repeaterless transmission of 80-channel AM-SCM signals over 100-km large-effective-area dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 12 (2000) 3, 341-343.
[4.4] C. H. Chang and Y. K. Chen, “Demonstration of repeaterless bi-directional transmission of multiple AM-VSB CATV signals over conventional single-mode fiber,” IEEE Photon. Technol. Lett. 12 (2000) 6, 734-736.
[4.5] C. H. Kim, and Y. C. Chung, “2.5 Gb/s ´ 16-channel bidirectional WDM transmission system using bidirectional erbium-doped fiber amplifier based on spectrally interleaved synchronized etalon filters,” IEEE Photon. Technol. Lett. 11 (1999) 6, 745-747.
[4.6] K. I. Suzuki, H. Masuda, S. Kawai, K. Aida, and J. Conradi, “Bidirectional 10-channel 2.5 Gbit/s WDM transmission over 250 km using 76 nm (1531-1607 nm) gain-band bidirectional erbium-doped fiber amplifiers,” Electron. Lett. 33 (1997) , 1967-1968.
[4.7] “The large effective area advantage: for multi-window applications,” Corning Corporation Tech. Report, 2000.
[4.8] H. H. Lu, H. L. Ma, and C. T. Lee,”Bidirectional transport of AM-VSB CATV system”; J. Opt. Commun. 23 (2002) 1, 22-25.
[4.9] H. H. Lu, H. L. Ma, C. S. Lee and C. T. Lee,”A DWDM system for 256-QAM transmission over 4 km multimode fiber”; Microwave and Optical Technology Lett. 33 (2002) 6, 419-421.
[4.10] M. R. Phillips and D. M. Ott, “Crosstalk caused by nonideal output filters in WDM lightwave systems,” IEEE Photon. Technol. Lett. 12 (2000) 8, 1094-1096.
[4.11] M. R. Phillips and D. M. Ott, “Crosstalk due to optical fiber nonliearities in WDM CATV lightwave systems,” J. Lightwave Technol. 17 (1999) , 1782-1792.
第五章
[5.1] M. N. O. Sadiku, and C. Aduba: “Cable modem technology”; IEEE Potentials 19 (2000) 4, 26-27.
[5.2] R. P. C. Wolters: “Characteristics of upstream channel noise in CATV-networks”; IEEE Trans. on Broadcasting 42 (1996) 4, 328-332.
[5.3] C. A. Eldering, N. Himayat, and F. M. Gardner: “CATV return path characterisation for reliable communications”; IEEE Commun. Mag. 33 (1995) 8, 62-69.
[5.4] A. H. H. Tan: “SUPER PON-A Fiber to the Home Cable Network for CATV and POTS/ISDN/VOD as Economical as a Coaxial Cable Network”; J. of Lightwave Technol. 15 (1997) 2, 213-218.
[5.5] X. Lu, G. E. Bodeep, and T. E. Darcie: “Broad-band AM-VSB/64QAM cable TV system over hybrid fiber/coax network”; IEEE Photon. Technol. Lett. 7 (1995) 3, 330-332.
[5.6] S. Ovadia, H. Dai, C. Lin, and W. T. Anderson: “Performance of hybrid multichannel AM/256-QAM video lightwave transmission systems”; IEEE Photon. Technol. Lett. 7 (1995) 11, 1351-1353.
指導教授 呂海涵、李清庭
(Hai-Han Lu、Ching-Ting Lee)
審核日期 2002-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明