博碩士論文 101224016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.17.150.163
姓名 簡品卉(Pin-hui Chien)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 LXR促效劑影響U937單核細胞到巨噬細胞分化過程中LXR受器與其他相關基因表現
(Liver X receptor agonists affect the expression of LXR and other related genes during differentiation of U937 monocytes to macrophages)
相關論文
★ 中華鱉腦垂體甘丙氨激素之研究:cDNA選殖、表現及調控★ 辛基苯酚對3T3-L1脂肪細胞中resistin的調節作用
★ 綠茶表沒食子酸酯型唲茶素酸酯對胰島素刺激前脂肪細胞增生的抑制★ FoxO1 調節抗胰島素激素基因的表現
★ 綠茶表沒食子唲茶素沒食子酸酯受器對於人類乳癌細胞株MCF7生長的影響★ 綠茶表沒食子酸酯型唲茶素酸酯抑制第一型内皮素作用於脂肪細胞上攝入葡萄糖的訊息機制
★ 綠茶表兒茶素藉由microRNA-494路徑改善橫向主動脈繃紮術誘導型小鼠的心臟疾病★ 內皮素誘導前脂肪細胞生長的訊息路徑
★ 綠茶對前脂肪細胞生長的影響★ 綠茶唲茶素對由第一型類胰島素所調節前脂肪細胞生長的影響
★ 綠茶唲茶素對於前脂肪細胞分化的影響★ Cdk2在綠茶唲茶素調節3T3-L1前脂肪細胞的生長和細胞凋亡扮演著必要性的角色
★ 綠茶唲茶素透過MAPK相關途徑抑制3T3-L1前脂肪細胞的生長★ 第一型類胰島素生長因子、綠茶唲茶素及雌性素對3T3-L1脂肪細胞中resistin的基因表達有不同的調節效果
★ 綠茶唲茶素對前脂肪細胞內活性氧及榖胱甘肽的影響★ 胰島素接受器受質在綠茶唲茶素對胰島素刺激前脂肪細胞生長作用中扮演的角色
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 肝臟X受器(liver X receptor)為脂類代謝和發炎反應的重要調節因子。先前我們實驗室的研究發現,三種肝臟X受器促效劑例如T0901317、GW3965和ATI-111在人類U937單核細胞和巨噬細胞中對於肝臟X受器和其他相關基因像是CD11、RXRα、SREBP-1c、resistin、MCP-1和CCL5的表現量有不同的影響。本篇研究擬進一步探討這三個肝臟X受器促效劑在佛波醇12- 肉荳蔻酸酯13- 乙酸酯(phorbol 12-myristate 13-acetate)分化劑誘導人類U937單核細胞到巨噬細胞為期四天的分化過程中是否會影響肝臟X受器和上述相關基因的表現量。結果顯示,在分化過程中,CD11a、CD11b、CD11c、LXRβ、RXRα、MCP-1與CCL5等基因的表現量皆增加,但LXRα、SREBP-1c與resistin mRNA表現量卻降低。單獨處理肝臟X受器促效劑二天與四天後,T0901317、GW3965和ATI-111三種藥物皆促進LXRα與SREBP-1c的基因表現,降低了MCP-1 mRNA表現量,卻沒有改變CD11、LXRβ、RXRα、resistin和CCL5的基因表現。然而,在有PMA處理細胞的情況下,我們發現肝臟X受器促效劑T0901317在U937單核細胞分化過程中,更增加了CD11b、LXRβ與CCL5基因表現量,更降低了resistin基因表現,不過,T0901317防止了PMA所誘導增加MCP-1基因表現的作用和PMA所誘導減少LXRα和SREBP-1c基因表現的作用,並沒有改變PMA所誘導增加CD11a、CD11c與RXRα的表現量之作用。另一方面,另兩種肝臟X受器促效劑例如GW3965和ATI-111有類似的作用,不同的是GW3965更增加了PMA所誘導CD11a與CD11c基因表現量之增加作用,ATI-111卻更增加了PMA所誘導CD11c基因表現量之增加作用。以上結果說明了這三個肝臟X受器促效劑在U937單核細胞分化成巨噬細胞的期間中對於基因的影響,會隨著基因種類而異,並與分化的過程有關。本研究成果針對肝臟X受器促效劑對於U937單核細胞分化成巨噬細胞、脂質代謝與炎症的作用,可協助釐清以上三型肝臟X受器促效劑的差異性作用。
摘要(英) Liver X receptors are important modulators of lipid metabolism and inflammatory response. Previously our laboratory had found that the three LXR agonists, such as T0901317, GW3965 and ATI-111, acted slightly differently on the expression of LXR and other related genes, such as CD11, RXRα, SREBP-1c, resistin, MCP-1, and CCL5 in human U937 monocyte and macrophage. We herein studied whether all three LXR agonists differentially affected mRNA expression of LXR and the above genes during the 4-day period of U937 monocyte differentiation to macrophage induced by phorbol 12-myristate 13-acetate (PMA). First, CD11a, b, and c, LXRβ, RXRα, MCP-1, and CCL5 genes expressed higher during the differentiation, while LXRα, SREBP-1c and resistin gene expression declined. Second, T0901317, GW3965, and ATI-111 alone stimulated the expression of LXRα, SREBP-1c mRNAs, and decreased levels of MCP-1 mRNA, and unaltered levels of CD11, LXRβ, RXRα, resistin, and CCL5 mRNAs after 2 and 4 days of treatment. In the presence of PMA, T0901317 enhanced the PMA-increased levels of CD11b, LXRβ, and CCL5 mRNAs and the PMA-decreased levels of resistin mRNA. However, it blocked the PMA-decreased levels of LXRα and SREBP-1c mRNAs and the PMA-increased levels of MCP-1 mRNA, and unaltered PMA-increased levels of CD11a, CD11c, and RXRα mRNAs. Similar effects of GW3965 and ATI-111 to T0901317 on the PMA-altered levels of LXRα, LXRβ, RXRα, SREBP-1c, resistin, MCP-1 and CCL5 mRNAs were observed, except that GW3965 enhanced the PMA-increased expression of CD11a and CD11c mRNAs and that ATI-111 enhanced the PMA-increased expression of CD11c mRNA. These data suggest that the effect of LXR agonist on gene expression during the differentiation of monocytes into macrophages varies with the types of genes and associates with the process of differentiation. Results of the study may help clarify the different magnitudes of actions of different LXR agonists on differentiation of U937 monocytes into macrophages, lipid metabolism and inflammation.
關鍵字(中) ★ 肝臟X受器 關鍵字(英) ★ LXR
★ T0901317
★ GW3965
★ ATI-111
論文目次 中文摘要 ......................................................................................................................................................... I
Abstract ......................................................................................................................................................... II
Acknowledgments ......................................................................................................................................... III
Contents ........................................................................................................................................................ IV
Introduction ................................................................................................................................................... 1
1. Liver X receptor (LXR) ............................................................................................................................ 1
2. LXR ligands ............................................................................................................................................. 1
3. Biological functions of LXRs ................................................................................................................... 4
4. Downstream genes of LXRs ..................................................................................................................... 5
5. The genes examined in the study ............................................................................................................. 5
6. Objectives ................................................................................................................................................. 9
Materials and Methods .................................................................................................................................11
1. Materials ................................................................................................................................................ 11
2. Cell culture ............................................................................................................................................ 11
3. RNA extraction ...................................................................................................................................... 12
4. Reverse transcription polymerase chain reaction (RT-PCR) ................................................................ 13
5. Real-time polymerase chain reaction .................................................................................................... 15
6. Statistical analysis ................................................................................................................................. 15 Results...........................................................................................................................................................17 1. T0901317, GW3965 and ATI-111 affected CD11 mRNA expression .................................................... 17 2. T0901317, GW3965 and ATI-111 affected LXR and RXRα mRNA expression ................................... 17 3. T0901317, GW3965 and ATI-111 increased SREBP-1c mRNA expression ......................................... 18 4. T0901317, GW3965 and ATI-111 affected resistin, MCP-1 and CCL5 mRNA expression .................. 18 5. T0901317, GW3965 and ATI-111 affected CD11 mRNA expression of human U937 monocyte in the absence of PMA as compared to those in the presence of PMA .................................................................... 19 6. T0901317, GW3965 and ATI-111 affected LXR and RXRα mRNA expression of human U937 monocyte in the absence of PMA as compared to those in the presence of PMA ......................................... 20
V
7. T0901317, GW3965 and ATI-111 affected SREBP-1c mRNA expression of human U937 monocyte in the absence of PMA as compared to those in the presence of PMA .............................................................. 20 8. T0901317, GW3965 and ATI-111 affected resistin, MCP-1, and CCL5 mRNA expression of human U937 monocyte in the absence of PMA as compared to those in the presence of PMA ................................ 21
Conclusions ...................................................................................................................................................26
References .....................................................................................................................................................28
Appendix.......................................................................................................................................................45
參考文獻 1. Janowski BA, et al. 1996. An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature. 383 : 728–731.
2. Delvecchio CJ and Capone JP. 2008. Protein kinase C α modulates liver X receptor α transactivation. Journal of Endocrinology. 197 : 121–130.
3. Apfel R, et al. 1994. A Novel Orphan Receptor Specific for a Subset of Thyroid Hormone-Responsive Elements and Its Interaction with the Retinoid/Thyroid Hormone Receptor Subfamily. American Society for Microbiology. 14 : 7025-7035.
4. Repa JJ and Mangelsdorf DJ. 2000. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annual reviews. 16 : 459-481.
5. Song C, et al. 1994. Ubiquitous receptor: A receptor that modulates gene activation by retinoic acid and thyroid hormone receptors. Proc Natl Acad Sci U S A. 91 : 10809-10813. 6. Jakobsson T, et al. 2012. Liver X receptor biology and pharmacology: new pathways, challenges and opportunities. Trends Pharmacol Sci. 33:394-404.
7. Pascual-García M and Valledor AF. 2012. Biological roles of liver X receptors inimmune cells. Arch Immunol Ther Exp (Warsz). 60:235-249.
8. Viennois E, et al. 2011. Targeting liver X receptors in human health: deadlock or promising trail? Expert Opin Ther Targets. 15 : 219-32.
9. Lehmann JM, et al. 1997. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem. 272 : 3137-3140.
10. Ruan B, et al. 1998. An alternative synthesis of 4, 4-dimethyl-5α-cholesta-8, 14, 24-trien-3β-ol, an intermediate in sterol biosynthesis and a reported activator of meiosis and of nuclear orphan receptor LXRα. Bioorg Med Chem Lett. 8 : 233-236.
11. Yang C, et al. 2006. Sterol Intermediates from Cholesterol Biosynthetic Pathway as Liver X Receptor Ligands. J Biol Chem. 281 : 27816-27826.
12. Song C, and Liao S. 2000. Cholestenoic Acid Is a Naturally Occurring Ligand for Liver X Receptor α. Endocrinology. 141 : 4180-4184.
13. Schultz JR, et al. 2000. Role of LXRs in control of lipogenesis. Genes Dev. 14 : 2831–2838.
14. Collins JL, et al. 2002. Identification of a Nonsteroidal Liver X Receptor Agonist through Parallel Array Synthesis of Tertiary Amines. J. Med. Chem. 45 : 1963-1966.
15. Joseph SB, et al. 2002. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci U S A. 99:7604-7609.
16. Peng D, et al. 2011. A novel potent synthetic steroidal liver X receptor agonist lowers plasma cholesterol and triglycerides and reduces atherosclerosis in LDLR(-/-) mice. Br J
29
Pharmacol. 162 : 1792-804.
17. Laffitte BA, et al. 2001. Autoregulation of the human liver X receptor alpha promoter. Mol Cell Biol. 21 : 7558-68.
18. Zhang Y, et al. 2012. Liver LXRα expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice. J Clin Invest. 122 : 1688-99.
19. Calkin AC and Tontonoz P. 2010. Liver x receptor signaling pathways and atherosclerosis. Arterioscler Thromb Vasc Biol. 30 : 1513–1518.
20. Edmondson AC, et al. 2011. Dense genotyping of candidate gene loci identifies variants associated with high-density lipoprotein cholesterol. Circ Cardiovasc Genet. 4 : 145–155.
21. Teslovich TM, et al. 2010. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 466 : 707–713.
22. Repa JJ, et al. 2002. Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta. J Biol Chem. 277 : 18793–18800.
23. Yu L, et al. 2003 .Stimulation of cholesterol excretion by the liver X receptor agonist requires ATP-binding cassette transporters G5 and G8. J Biol Chem. 278 : 15565–15570.
24. Berge KE, et al. 2000. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science. 290 : 1771–1775. 25. Joseph SB and Tontonoz P. 2003. LXRs: new therapeutic targets in atherosclerosis? Curr Opin Pharmacol. 3:192-7.
26. Bischoff ED, et al. 2010. Non-redundant roles for LXRalpha and LXRbeta in atherosclerosis susceptibility in low density lipoprotein receptor knockout mice. J Lipid Res. 51 : 900–906.
27. Joseph SB, et al. 2002. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci U S A. 99 : 7604–7609.
28. Levin N, et al. 2005. Macrophage liver X receptor is required for antiatherogenic activity of LXR agonists. Arterioscler Thromb Vasc Biol. 25 : 135–142.
29. Terasaka N, et al. 2003. T-0901317, a synthetic liver X receptor ligand, inhibits development of atherosclerosis in LDL receptor-deficient mice. FEBS Lett 536 : 6–11.
30. Repa JJ, et al. 2000. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science. 289:1524-1529.
31. Venkateswaran A, et al. 2000. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha. Proc. Natl. Acad. Sci. U. S. A.97:12097-12102.
32. Hannelie K, et al. 2009. Liver X receptors contribute to the protective immune response against Mycobacterium tuberculosis in mice. J Clin Invest.119(6):1626–1637.
33. Zelcer N. and Tontonoz P. 2006. Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest. 116 : 607-14.
34. Joseph SB, et al. 2003. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med. 9 : 213–219.
30
35. Joseph SB, et al. 2004. LXR-dependent gene expression is important for macrophage survival and the innate immune response. Cell. 119 : 299–309.
36. Lee JH, et al. 2009. Differential SUMOylation of LXRα and LXRβ Mediates Transrepression of STAT1 Inflammatory Signaling in IFN-γ-Stimulated Brain Astrocytes. Mol Cell. 35 : 806-817.
37. Yasuda T, et al. 2005. Suppression of inducible nitric oxide synthase and cyclooxygenase-2 gene expression by 22(R)-hydroxycholesterol requires de novo protein synthesis in activated macrophages. J Steroid Biochem Mol Biol. 97 : 376–383.
38. Zelcer N. and Tontonoz P. 2006. Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest. 116 : 607–614. 39. Valledor AF, et al. 2004. Activation of liver X receptors and retinoid X receptors prevents bacterial-induced macrophage apoptosis. Proc. Natl. Acad. Sci. U. S. A. 101:17813-17818. 40. Fontaine C, et al. 2007. Liver X receptor activation potentiates the lipopolysaccharide response in human macrophages. Circ Res. 101:40-49. 41. Pehkonen P, et al. 2012. Genome-wide landscape of liver X receptor chromatin binding and gene regulation in human macrophages. BMC Genomics. 13:1-20. 42. Huang SX. 2014. Liver X receptor (LXR) agonists affect the expression of LXR and downstream genes in U937 monocyte and marcrophage. Unpublished master dissertation, National Center University, Taiwan. 43. Kürzinger K, et al. 1981. A novel lymphocyte function-associated antigen (LFA-1): cellular distribution, quantitative expression, and structure. J Immunol. 127:596-602. 44. Dustin ML, et al. 1989. T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature. 341:619–624. 45. Kano Y, et al. 2013. Suppression of LFA-1 expression by spermine is associated with enhanced methylation of ITGAL, the LFA-1 promoter area. PLoS One. 8:e56056. 46. Dai Y, et al. 2003. An intact NF-kappaB pathway is required for histone deacetylase inhibitor-induced G1 arrest and maturation in U937 human myeloid leukemia cells. Cell Cycle. 2:467-72. 47. Stewart M, et al. 1996. Leukocyte integrins. Cell Biol. 7 : 690–6.
48. Raccosta L, et al. 2013. The oxysterol-CXCR2 axis plays a key role in the recruitment of tumor-promoting neutrophils. J Exp Med. 210:1711-28. 49. Gao M, et al. 2013. Concurrent activation of liver X receptor and peroxisome proliferator-activated receptor alpha exacerbates hepatic steatosis in high fat diet-induced obese mice. PLoS One. 8:e65641. 50. Repa JJ, et al. 2007. Liver X receptor activation enhances cholesterol loss from the brain, decreases neuroinflammation, and increases survival of the NPC1 mouse. J Neurosci. 27:14470-80. 51. Yokoyama C, et al. 1993. SREBP-1,basic-helix-loop-helix-leucine zipper protein
31
that controls transcription of the low density lipoproteinreceptor gene. Cell. 75:187-197. 52. Repa JJ, et al. 2000. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev. 14:2819-30. 53. Steppan CM, et al. 2001. The hormone resistin links obesity to diabetes. Nature. 409:307-312. 54. Singh AK, et al. 2010. Transcription of human resistin gene involves an interaction of Sp1 with peroxisome proliferator-activating receptor gamma (PPARgamma). PLoS One. 5:e9912. 55. Carr MW, et al. 1994. Monocyte chemoattractant rotein acts as T-lymphocyte chemoattractant. Proc Natl Acad Sci U S A. 91:3652-3656. 56. Xia M, et al. 2009. Recent developments in CCR2 antagonists. Expert Opin Ther Pat. 19:295-303. 57. Zhang-Gandhi CX and Drew PD. 2007. Liver X receptor and retinoid X receptor agonists inhibit inflammatory responses of microglia and astrocytes. J Neuroimmunol.183:50-9.
58. Rot A, et al. 1992. RANTES and macrophage inflammatory protein 1 alpha induce the migration and activation of normal human eosinophil granulocytes. J Exp Med. 176:1489-95.
59. Alam R, et al. 1992. Interleukin-8 and RANTES inhibit basophil histamine release induced with monocyte chemotactic and activating factor/monocyte chemoattractant peptide-1 and histamine releasing factor. Am J Respir Cell Mol Biol. 7:427-33. 60. Higham A, et al. 2013. The role of the liver X receptor in chronic obstructive pulmonary disease. Respir Res. 14:106. 61. Oberg F, et al. 1993. Functional antagonism between vitamin D3 and retinoic acid in the regulation of CD14 and CD23 expression during monocytic differentiation of U-937 cells. J Immunol. 150:3487-95. 62. Chen YH, et al. 2006. 17β-estradiol stimulates resistin gene expression in 3T3-L1 adipocytes via the estrogen receptor, extracellulary regulated kinase, and CCAAT/enhancer binding protein-α pathways. Endocrinology. 147:4496-4504. 63. Lee MJ, et al. 2008. Octylphenol stimulates resistin gene expression in 3T3-L1 adipocytes via the estrogen receptor and extracellular signal-regulated kinase pathways. Am J Physiol Cell Physiol. 294:C1542-51. 64. Kunnari AM, et al. 2009. The expression of human resistin in different leucocyte lineages is modulated by LPS and TNFalpha. Regul Pept. 157:57-63. 65. García A, et al. 1999. Differential effect on U937 cell differentiation by targeting transcriptional factors implicated in tissue- or stage-specific induced integrin expression. Exp Hematol. 27:353-64.
32
66. Deszo EL, et al. 2001. CD45 negatively regulates monocytic cell differentiation by inhibiting phorbol 12-myristate 13-acetate-dependent activation and tyrosine phosphorylation of protein kinase Cdelta. J Biol Chem. 276:10212-7. 67. Yamaguchi K, et al. 1994. The regulation of HIV by retinoic acid correlates with cellular expression of the retinoic acid receptors. AIDS. 8:1675-82 68. Seo JB, et al. 2003. Functional characterization of the human resistin promoter with adipocyte determination- and differentiation-dependent factor 1/sterol regulatory element binding protein 1c and CCAAT enhancer binding protein-alpha. Mol Endocrinol. 17:1522-33. 69. Hartman HB, et al. 2002. Mechanisms regulating adipocyte expression of resistin. J Biol Chem. 277:19754-61. 70. Génin P, et al. 1999. Differential regulation of CC chemokine gene expression in human immunodeficiency virus-infected myeloid cells. Virology. 261:205-15. 71. Nadesalingam J, et al. 2005. Mannose-binding lectin recognizes peptidoglycan via the N-acetyl glucosamine moiety, and inhibits ligand-induced proinflammatory effect and promotes chemokine production by macrophages. J Immunol. 175:1785-94.
72. Moriuchi H, et al. 1997. Nuclear factor-kappa B potently up-regulates the promoter activity of RANTES, a chemokine that blocks HIV infection. J mmunol. 158:3483-91. 73. Thommesen L, et al. 2006. Expression and regulation of resistin in osteoblasts and osteoclasts indicate a role in bone metabolism. J Cell Biochem. 99:824-34. 74. Cheng B, et al. 2005. Mechanisms of increased expression of toll-like receptor-4 in human monocyte/macrophage-derived foam cells. J Huazhong Univ Sci Technolog Med Sci. 25:477-9.
指導教授 高永旭(Yung-hsi Kao) 審核日期 2014-11-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明