博碩士論文 101331010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:3.133.148.130
姓名 葉旭文(Shiu-wen Yeh)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 運用時頻轉換分析方法研究 工作記憶訓練之人類大腦可塑性
(Using time-frequency transform to analyze human brain plasticity of working memory training)
相關論文
★ 足弓指標參數之比較分析★ 運用腦電波研究中風病人的復健成效 與持續情形
★ 重複間斷性Theta爆發刺激對手部運動之腦波的影響★ Amylose mediated electricity production of Staphylococcus epidermidis for inhibition of Cutibacterium acnes growth
★ 使用虛擬實境系統誘發事件相關電位P300之研究★ 虛擬實境誘發體感覺事件相關電位P300之動態因果模型研究
★ 使用GPU提升事件相關電位之動態因果模型的運算效能★ 基於動態因果模型之老化相關的運動網路研究
★ 應用腦電圖預測中風病人復健情況★ 以益智遊戲進行空間工作記憶訓練在事件相關電位P3上的影響
★ 基於虛擬實境復健之中風後運動網路功能性重組研究★ 應用腦電圖與相關臨床因子預測中風病人復原之研究
★ 中風復健後與虛擬實境物理參數 相關的動作網絡重組★ 以運動指標預測復健成效暨設計復健方針
★ 中風患者在復健後的大腦神經連結的變化★ 運用N-back任務和空間工作記憶訓練分析神經相關性能之ERP和DCM研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 過去人們曾經認為隨著年齡變化工作記憶(Working memory)的容量仍然是恆定的,但是越來越多的心理生理研究顯示,工作記憶的容量是可以經由適當且長期的訓練造成改變,例如工作記憶的容量提升會反映在任務表現與智力測驗的增加上。但仍有部分的學者提出相反的意見,認為工作記憶的容量提升並沒有反映在智力測驗分數的增減上,其中的原因可能是,認知訓練的成效造成神經生理結構上的改變,但最主要的效果並不是反映在智力測驗上。因此本研究希望由事件相關同步化/非同步化(ERS/ERD)方法,從神經生理的電訊號改變中,找到一個客觀量化的指標,以用來評估工作記憶訓練的成效。
本研究招募17位中央大學的學生並隨機分組,其中控制組8人,實驗組9人。控制組要求進行與記憶無關的動作控制遊戲,實驗組則進行一個與spatial span相似的益智遊戲,兩組的訓練時間為三週,每週五次,每次三十分鐘。在訓練前後受試者會進行四種難度的空間n-back作業,並同時記錄腦電圖。
腦電圖資料使用莫萊小波轉換做後處理,分析頻帶為Low theta 4-6Hz、High theta 6-8Hz、Low alpha 8-10Hz、High alpha 10-12Hz,接著使用事件相關同步化/非同步化技術,找出兩組表現相異之處。除此之外,反應時間與回答正確率也在實驗結束後做蒐集,加入統計分析中。
對於行為數據的統計結果顯示,反應時間與回答正確率中,兩組並不存在組間差異,這結果與先前的文獻一致,行為數據的變化未必能反映出工作記憶的成效。經由迴歸分析,我們發現記憶負荷與行為數據存在這非線性的相關,但這結果與訓練無關。腦電圖的結果顯示了工作記憶訓練的成效(組間差異)主要表現在後側腦區的ERD/ERS (Low theta, 0~500 ms)。另外,考慮到不對稱的因素,我們發現訓練後在中央腦區(Low theta, 500~1500ms)和後側腦區 (Low theta 、Low alpha , 250~1000ms)單邊優勢有顯著的組間差異。
綜合以上結果,我們的研究表明記憶訓練會造成神經生理的改變,但是不一定表現在行為數據上。未來的工作中,我們會繼續找出此訓練成效之下的神經機制。
摘要(英) It was once believed that working memory (WM) capacity is constant through life span. Recently, psycho-physiologic evidence has emergence that, working memory capacity is adaptive after adequate training as reflected in better task performance or greater standardized intelligence scores (IQ scores). However, unified conclusions has not yet reached because experimental results from behavioral studies were inconsistent: the IQ scores didn′t increase after training in some studies while some did. The reason may rest upon the fact that, the neurophysiologic plasticity after training is not necessarily related to the IQ scores. In this study, we aimed to find a estimate of working memory training effect by electroencephalography (EEG) and the event-related synchronization/ desynchronization (ERS/ERD) method.
Seventeen healthy university students were recruited and randomly divided into two groups (Control:8 and Experimental:9). The experimental group was required to play a spatial span task-liked puzzle game to train the WM system while the control group played only a movement-related game. The training intensity was 30 minutes a day, 5 days a week for 3 weeks for both groups. EEG data (Sampling rate = 2000 Hz, down sampling to 200Hz) from all subjects were recorded during spatial n-back tasks(n=0,1,2,3) at different training phases (pre- and post-training). EEG data were transformed into time-frequency signal by Morlet wavelet transform and divided into four frequency bands (Low theta 4-6Hz、High theta 6-8Hz、Low alpha 8-10Hz、High alpha 10-12Hz) for further analysis. The ERD/ERS of these four frequency bands were computed for each subject and ANOVA test were performed to find the difference between groups. In addition, the behavior data of reaction time (RT) and response correct rate also entered the statistical test.
The statistical test on behavioral data shows that there is no significant difference between two groups. This result is in line with some previous studies that the behavioral result may not be able to reflect the WM training effect. By using the regression analysis, we found that there exists a nonlinear relation between memory load and the behavioral data, irrespective to training.
The EEG results show that the WM training effect (i.e. the difference between two groups) was most manifest in posterior ERD/ERS (low theta, 0~500 ms). Furthermore, when taking into account the lateralization factor, we found a significant between-group difference of unilateral dominance over central (low theta, 500~1500ms) and posterior regions (low theta、low alpha 250~1000ms) after training. Collectively, our findings suggest that working memory training would induce the neurophysiological changes, though it is not necessarily reflected in the behavior data. In the future work, we will be looking for the mechanisms underlying these training changes.
關鍵字(中) ★ 工作記憶訓練
★ 事件相關同步化
★ 事件相關非同步化
★ 空間 n-back作業
關鍵字(英) ★ Working memory training
★ Event-related synchronization
★ Event-related desynchronization
★ Spatial n-back task
論文目次 Abstract IV
目錄 VI
圖目錄 IX
表目錄 X
第一章 緒論 1
1-1 研究動機與背景 1
1-2 研究目的 2
1-3 論文架構 2
第二章 背景知識與文獻回顧 4
2-1 腦電波圖 4
2-1-1 腦波的起源 4
2-1-2 腦波的分類 4
2-1-3 腦波的量測 5
2-2 工作記憶 7
2-2-1 記憶的階段 7
2-2-2 記憶的分類 7
2-2-3 工作記憶模型 8
2-2-4工作記憶與流體智力 10
2-3 工作記憶與時頻分析 12
2-3-1 事件相關電位 12
2-3-2 事件相關同步化/非同步化 13
2-3-3 N-back實驗在Theta頻帶的表現 15
2-3-4 N-back實驗在Alpha頻帶的表現 17
第三章 儀器設備與研究方法 19
3-1 儀器設備 19
3-2 研究方法 20
3-2-1 受試者 20
3-2-2 腦電波實驗 21
3-2-3 工作記憶訓練 23
3-2-4 數據分析 26
3-2-5 小波轉換 27
第四章 實驗結果 30
4-1 行為數據 30
4-1-1 反應時間 30
4-1-2 回答正確率 36
4-2 記憶訓練對於大腦活化區域的改變 42
4-2-1 N-back任務對於前中後腦區的活化改變 42
4-2-2 N-back任務的單邊優勢 49
第五章 討論與結論 57
5-1 行為數據 57
5-2 前中後腦區的活化改變 60
5-2-1 前側腦區(F3,Fz,F4) 60
5-2-2 中央腦區(T7,C3,Cz,C4,T8) 61
5-2-3 後側腦區(P7,P3,Pz,P4,P8,Oz) 62
5-3 單邊優勢的改變 63
5-3-1 前側腦區(F3-F4) 63
5-3-2 中央腦區(C3-C4) 63
5-3-3 後側腦區(P3-P4) 64
5-3-4 結論 66
第六章 未來展望 68
第七章 附錄 70
第八章 參考文獻 82
參考文獻 1. Klingberg, T., Training and plasticity of working memory. Trends in cognitive sciences, 2010. 14(7): p. 317-324.
2. Miller, G.A., The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological review, 1956. 63(2): p. 81.
3. Grabner, R., et al., Intelligence and working memory systems: evidence of neural efficiency in alpha band ERD. Cognitive Brain Research, 2004. 20(2): p. 212-225.
4. Jaeggi, S.M., et al., Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 2008. 105(19): p. 6829-6833.
5. Berger, H., Über das elektrenkephalogramm des menschen. European Archives of Psychiatry and Clinical Neuroscience, 1929. 87(1): p. 527-570.
6. Sanei, S. and J.A. Chambers, EEG signal processing. 2008: John Wiley & Sons.
7. Atkinson, R.C. and R.M. Shiffrin, Human memory: A proposed system and its control processes. Psychology of learning and motivation, 1968. 2: p. 89-195.
8. Baddeley, A.D. and G. Hitch, Working memory. Psychology of learning and motivation, 1974. 8: p. 47-89.
9. Baddeley, A., The episodic buffer: a new component of working memory? Trends in cognitive sciences, 2000. 4(11): p. 417-423.
10. Cattell, R.B., Theory of fluid and crystallized intelligence: A critical experiment. Journal of educational psychology, 1963. 54(1): p. 1.
11. Jensen, A.R., Raising the IQ: The Ramey and Haskins study. Intelligence, 1981. 5(1): p. 29-40.
12. Herrnstein, R.J. and C. Murray, Bell curve: Intelligence and class structure in American life. 2010: Simon and Schuster.
13. Buschkuehl, M. and S.M. Jaeggi, Improving intelligence: A literature review. Swiss medical weekly, 2010. 140(19-20): p. 266-272.
14. Jaeggi, S.M., et al., Short-and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences, 2011. 108(25): p. 10081-10086.
15. Chooi, W.-T. and L.A. Thompson, Working memory training does not improve intelligence in healthy young adults. Intelligence, 2012. 40(6): p. 531-542.
16. Thompson, T.W., et al., Failure of working memory training to enhance cognition or intelligence. PloS one, 2013. 8(5): p. e63614.
17. Pfurtscheller, G. and F.H. Lopes da Silva, Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical neurophysiology, 1999. 110(11): p. 1842-1857.
18. Picton, T., et al., Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology, 2000. 37(02): p. 127-152.
19. Sayers, B.M., H. Beagley, and W. Henshall, The mechanism of auditory evoked EEG responses. Nature, 1974.
20. Vijn, P., B.W. Van Dijk, and H. Spekreijse, Visual stimulation reduces EEG activity in man. Brain research, 1991. 550(1): p. 49-53.
21. Yordanova, J., V. Kolev, and J. Polich, P300 and alpha event-related desynchronization (ERD). Psychophysiology, 2001. 38(01): p. 143-152.
22. Palomäki, J., et al., Brain oscillatory 4–35Hz EEG responses during an n-back task with complex visual stimuli. Neuroscience letters, 2012. 516(1): p. 141-145.
23. Krause, C.M., Cognition-and memory-related ERD/ERS responses in the auditory stimulus modality. Progress in brain research, 2006. 159: p. 197-207.
24. Klimesch, W., EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain research reviews, 1999. 29(2): p. 169-195.
25. Sauseng, P., et al., Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. International Journal of Psychophysiology, 2005. 57(2): p. 97-103.
26. Krause, C.M., et al., The effects of memory load on event-related EEG desynchronization and synchronization. Clinical neurophysiology, 2000. 111(11): p. 2071-2078.
27. Pesonen, M., H. Hämäläinen, and C.M. Krause, Brain oscillatory 4–30 Hz responses during a visual< i> n-back memory task with varying memory load. Brain Research, 2007. 1138: p. 171-177.
28. Başar, E., Memory as the “whole brain work”: a large-scale model based on “oscillations in super-synergy”. International journal of psychophysiology, 2005. 58(2): p. 199-226.
29. Pesonen, M., et al., Brain oscillatory 1–30Hz EEG ERD/ERS responses during the different stages of an auditory memory search task. Neuroscience letters, 2006. 399(1): p. 45-50.
30. Tsoneva, T., et al. EEG-rhythm dynamics during a 2-back working memory task and performance. in Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE. 2011. IEEE.
31. Klimesch, W., EEG-alpha rhythms and memory processes. International Journal of Psychophysiology, 1997. 26(1-3): p. 319-340.
32. Klimesch, W., P. Sauseng, and S. Hanslmayr, EEG alpha oscillations: the inhibition–timing hypothesis. Brain research reviews, 2007. 53(1): p. 63-88.
33. Stipacek, A., et al., Sensitivity of human EEG alpha band desynchronization to different working memory components and increasing levels of memory load. Neuroscience Letters, 2003. 353(3): p. 193-196.
34. Smith, E.E. and J. Jonides, Storage and executive processes in the frontal lobes. Science, 1999. 283(5408): p. 1657-1661.
35. Kirchner, W.K., Age differences in short-term retention of rapidly changing information. Journal of experimental psychology, 1958. 55(4): p. 352.
36. Schlögl, A., et al., A fully automated correction method of EOG artifacts in EEG recordings. Clinical neurophysiology, 2007. 118(1): p. 98-104.
指導教授 陳純娟(Chun-Chuan Chen) 審核日期 2014-11-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明