博碩士論文 945201020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:18.227.190.228
姓名 洪政亮(Cheng-Liang Hung)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 高速有線傳輸系統之時脈產生器關鍵技術
(On Techniques of Clock Generator Used in High-Speed Wireline Transmission Systems)
相關論文
★ 一種應用於觸控液晶顯示器的新型嵌入式開關★ 多重相位之延遲鎖定迴路倍頻器設計與分析
★ 2.5Gbps串列收發器設計★ 具低抖動與可適應式頻寬之自我偏壓鎖相迴路設計
★ 應用於串列傳輸之2.5GB/s CMOS 超取樣資料回復電路★ 全數位任意責任週期之同步映射延遲電路
★ 全數位式互補金屬氧化半導自我取樣延遲線電路用於時脈抖動量測★ 500MHz,30個相位輸出之鎖相迴路應用於三倍超取樣時脈回復系統
★ 設計於90奈米製程輸出頻率為100MHz-1GHz之具可適應性頻寬鎖相迴路★ 高解析度可變動責任週期之同步複製延遲電路
★ 奈米CMOS晶片內序列傳輸之接收器★ 奈米CMOS晶片內序列傳輸之送器
★ 基於鎖相迴路之多重相位脈波產生器★ 低能量時脈儲存元件之分析、設計與量測
★ 具有預先增強器之Gbps串列連結傳送器及全數位超取樣資料回復器★ 應用於10Gbps晶片系統傳輸鏈之低抖動自我校準鎖相迴路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著積體電路製造技術促進高速數據傳輸的發展,資料傳輸量發展至每秒數兆位元(Gb/s)。高速串列連結技術(high-speed serial link technology)是現今主要數據傳輸技術,亦被廣泛應用在有線收發裝置上。然而,在整個高速串列連結系統中,其性能關鍵取決於時脈產生器(timing clock generator)的品質和精準度。因此,鎖相迴路(phase-locked loop, PLL)或展頻時脈產生器(spread-spectrum clock generator, SSCG)在關鍵時脈產生器扮演重要的角色。
當資料傳輸速率已達每秒數兆位元,發射端的傳輸資料往往伴隨高次諧波,這將導致電磁干擾(electromagnetic interference, EMI),並且嚴重影響周遭其他裝置。為了解決此問題,本論文提出了一在90 nm CMOS製程使用分數型鎖相迴路具三角波調變之6-GHz展頻時脈產生器。本論文提出的相位旋轉技術,乃透過調變分數除率來實現展頻時脈(spread-spectrum clocking, SSC),此技術有效補償瞬時時序錯誤,同時避免量化誤差的產生。與傳統展頻時脈產生器使用三角積分調變相比,傳統展頻時脈產生器改變多模數除率造成蓄意的相位跳動等效分數除率,本論文實現無擾動真實性分數除率。量測結果顯示本方法抑制方均根抖動量小於1 ps,因此在抖動性能上具有顯著改善。
此外,目前有線收發技術應用須具備向下相容能力,使得資料傳輸速率涵蓋了數Gb/s範圍,這也驅使設計一具寬範圍時脈產生器可支援數種世代規格。因此,時脈產生器中的壓控震盪器(voltage-controlled oscillator, VCO)扮演關鍵的角色。本論文提出了一在90 nm CMOS製程使用主動電感之寬頻率調諧範圍LC-壓控震盪器,此LC-壓控制震盪器在有線收發機介面相容性設計上,更具彈性及無須重新設計之特點。其可操作頻率範圍使得時脈產生器得以應用數種不同規格。另外本論文所提出主動電感亦顯示降低電感損耗特性來提升其品質因素(quality factor, Q)。量測0.9至8 GHz調諧範圍(160%)之間的相位雜訊在中心頻率偏移1 MHz為–118至–105 dBc/Hz。
時脈產生器中另一重要電路為除頻器(frequency divider, FD),意味除頻器必須能在最高時脈頻率下處理除頻訊號。因此本論文提出了一在90 nm CMOS製程具高速操作且具備混合模數之可編程化除頻器,藉由提出一具三模式模數切換的除法器單元,使用於現有的多模除頻器(multi-modulus divider, MMD),可實現1步階或0.5步階模數的改變,亦顯示運用於三角積分調變時,將具備抑制–6 dB量化雜訊之優點。此外,本論文在除頻器單元中的數位邏輯電路使用主動電感與一自我省電技巧,使除頻器具高速功能、全數位操作及良好功率效率表現。量測操作在輸入頻率6.25 GHz時,除頻器的功率效率為2.12 GHz/mW。
最後,本論文整合所提之技術,實現另一5 GHz展頻時脈產生器。同時,在模擬USB 3.1 10 Gb/s測試環境下利用USB 3.1規範的一致性測試,進行展頻時脈產生器的抖動量測。綜觀本論文所提技術顯示,本論文所提出的架構可因應未來下一世代高速有線收發機介面。
摘要(英) Advance in integrated circuit (IC) fabrication technology facilitates the high-speed transmission of data to be upward evolved into several gigabits per second (Gb/s). The high-speed serial link technology is the major technique in modern data transmission. It is widely employed in wireline SerDes applications. In the overall high-speed serial link systems, however, the performance depends crucially on the quality and precision of the essential timing clock generator. Thus, a phase-locked loop (PLL) or a spread-spectrum clock generator (SSCG) plays an important role in such critical building block for clock generation.
As the transmitted data rate has been upgraded into milti-Gb/s, the signal of the data launched by the transmitter (TX) accompanies the higher order harmonics. It results in the power-radiated electromagnetic interference (EMI) issue and may stringently affect the other equipment in the vicinity. To address this issue, this dissertation presents a 6-GHz triangular-modulated SSCG based on a fractional-N PLL in a 90-nm CMOS process. The proposed phase-rotating technique implements the spread-spectrum clocking (SSC) by modulating the fractional-N ratios. The presented technique effectively compensates the instantaneous timing error and shows the ignorable quantization error. Unlike the delta-sigma (ΔΣ) technique commonly used for SSCGs, the proposed SSCG realizes non- dithered fractional division ratios. It shows that the deliberate phase jump stemming from the ΔΣ control could be dismissed. In terms of SSC, this approach suppresses the RMS jitter to be less than 1 ps, showing a significant improvement in the jitter performance.
In the current wireline SerDes application, it evolves the coexistence of several specification generations, and covers the data rate range of several Gb/s. As a result, a wide range clock generator to support multi-specification generations is desirable, and thus, the sub-building block of the clock generator, i.e., the voltage-controlled oscillator (VCO), plays the critical role. This dissertation presents a wide frequency tuning range inductor- capacitor-based VCO (LC-VCO) with an active inductor in a 90-nm CMOS process. The proposed LC-VCO is intended to be flexible without redesign for several new-generation wireline SerDes interfaces. The wide operating frequency makes the clock generator applicable to the multistandards. As a result, the proposed active inductor shows a quality factor, i.e., Q, enhancement technique for the reduction in the loss from the active inductor, deriving an appropriate phase noise of –105 to –118 dBc/Hz at a 1-MHz offset over the entire tuning range of 0.9 to 8 GHz (160%).
In addition, the other essential sub-building block is the frequency divider (FD). It implies that the FD must process the signal operating at the highest clock frequency. Thus, this dissertation presents a high-speed power-efficient programmable frequency divider with a hybrid integer/fraction modulus steps in a 90-nm CMOS. Based on the proposed divider cell used in the multi-modulus divider (MMD), the FD easily realizes the flexible modulus 1- or 0.5-step-size MMD, showing the potential merit of the –6-dB suppressed quantization noise. In addition, by the embodiment of active-inductor-based digital logic cells with a self-power-saving scheme in the divider, the capabilities of high-speed, all-digital operation and good power-efficient are derived. Operating at 6.35 GHz, the perfectible power efficiency is 2.12 GHz/mW.
As a result, integrating the advanced technique that presented, the dissertation also presents a 5-GHz, dual SSC mechanism SSCG. Meanwhile, a similar USB 3.1 10 Gb/s compliance test is set up for the demonstration of the SSCG jitter measurement. Such work might be appropriate for the new-generation of the high-speed wireline SerDes interfaces.
關鍵字(中) ★ 有線收發機介面
★ 展頻時脈產生器
★ 分數型鎖相迴路
★ 相位補償式分數除頻器
★ 差動主動式電感
★ 壓控震盪器
★ 寬頻
★ 多模數除頻器
關鍵字(英) ★ wireline SerDes interfaces
★ spread-spectrum clock generator
★ fractional-N phase-locked loop
★ phase-compensated fractional divider
★ differential active inductor
★ voltage-controlled oscillator
★ wideband
★ multi-modulus divider
論文目次 摘要 i
Abstract iii
Acknowledgements vi
Table of Contents ix
Figure Captions xiii
Table Captions xviii
Chapter 1 Introduction 1
1.1 Evolution of High-Speed Serial Link Typology 1
1.2 Motivation 3
1.2.1 FORWARDED CLOCK ARCHITECTURE 3
1.2.2 EMBEDDED CLOCK ARCHITECTURE 3
1.2.3 MOTIVATION IN THE DESIGN OF CRITICAL BUILDING BLOCK IN HIGH-SPEED SERIAL LINK SYSTEM 4
1.3 Thesis Organization 6
Chapter 2 The Fundamental of the Critical Building Block in the High-Speed Serial Link System 9
2.1 Electromagnetic Interference 9
2.1.1 EFFECTS OF ELECTROMAGNETIC FIELD 9
2.1.2 INHERENT DIFFERENTIAL SIGNALING FOR EMI REDUCTION 10
2.2 Overview of Spread-Spectrum Clock Generators 11
2.2.1 DIRECT VCO MODULATION SSCG 12
2.2.2 OPEN-LOOP MULTIPHASE VCO SSCG 13
2.2.3 DELTA-SIGMA MODULATION SSCG 14
2.2.3.1 CONVENTIONAL ΔΣ-BASED FRACTIONAL-N PLL FOR SSCG 14
2.2.3.2 TIMING IMPACT OF ΔΣ-BASED SSCG 15
2.2.3.3 CLOSED-LOOP MULTIPHASE VCO SSCG 16
2.2.3.4 PULSE-SWALLOW FRACTIONAL DIVIDER SSCG 17
2.2.3.5 MULTIPHASE FRACTIONAL DIVIDER SSCG 18
2.2.3.6 DIGITAL DELAY LINE FRACTIONAL DIVIDER SSCG 19
2.2.4 ALL DIGITAL SSCG 21
2.2.4.1 ALL DIGITAL ΔΣ-FREE UNDER-DAMPING SSCG 22
2.2.5 SELF-OSCILLATING NATURE FREQUENCY SSCG 24
2.2.6 CHAOTIC PULSE-AMPLITUDE MODULATION SSCG 25
2.2.7 SUMMARY 28
Chapter 3 A 0.77 ps RMS Jitter 6-GHz Spread-Spectrum Clock Generator Using a Compensated Phase-Rotating Technique 29
3.1 SSCG Architecture 29
3.1.1 OVERVIEW OF STATE-OF-THE-ART PHASE-COMPENSATION-RELATED APPROACHES 29
3.1.2 SYSTEM ARCHITECTURE OF PROPOSED SSCG 31
3.1.3 PHASE-COMPENSATED FRACTIONAL DIVIDER 34
3.2 Linear Analysis of Proposed SSCG 40
3.2.1 LINEAR MODEL ANALYSIS 40
3.2.2 TRIANGULAR-MODULATED WAVEFORM FOR DOWN-SPREADING SPECTRUM CLOCKING 43
3.2.3 EFFECT OF INTERPOLATED PHASE MISMATCH ON PROPOSED SSCG 45
3.3 Circuit Implementation 50
3.3.1 LC-VCO 50
3.3.2 DIVIDE-BY-119/120 DUAL-MODULUS DIVIDER 50
3.3.3 PHASE BLENDER 52
3.3.4 CURRENT SEGMENT AND PHASE INTERPOLATOR 53
3.3.5 MODULATION PROFILE 57
3.3.6 CHARGE PUMP AND LOW-PASS FILTER 57
3.4 Experimental Results 59
Chapter 4 A 0.9–8 GHz VCO with a Differential Active Inductor for Multistandard Wireline SerDes 65
4.1 Background 65
4.1.1 TREND OF HIGH-SPEED SERIAL-LINK-BASED WIRELINE COMMUNICATIONS 65
4.1.2 DILEMMA OF PRIOR WORKS FOR VCO 66
4.2 Circuit Description 67
4.2.1 LC-VCO CIRCUIT TOPOLOGY 67
4.2.2 SELF-CALIBRATION TECHNIQUE 69
4.2.3 PROPOSED DIFFERENTIAL ACTIVE INDUCTOR 72
4.2.3.1 ARCHITECTURE 72
4.2.3.2 SMALL-SIGNAL ANALYSIS 73
4.2.3.3 SIMULATION OF DIFFERENTIAL ACTIVE INDUCTOR 75
4.2.4 DESIGN CONSIDERATIONS 77
4.2.4.1 EFFECT OF ACTIVE-INDUCTOR-BASED LC-VCO 77
4.2.4.2 TUNING CURVE DRIFTING OF SELF-CALIBRATION TECHNIQUE 78
4.2.4.3 PHASE NOISE ESTIMATION 79
4.3 Experimental Results 81
Chapter 5 A 6.35-GHz, 2.12-GHz/mW 1/0.5-Modulus-Step Frequency Divider With a Hybrid Modulus-Switching Divider Cell Using a Self-Power-Saving Scheme 87
5.1 Background 87
5.1.1 ESSENTIAL BUILDING BLOCK OF SSCG 87
5.1.2 FUNCTIONS OF DESIRED FREQUENCY DIVIDER 88
5.2 Circuit Description 88
5.2.1 HYBRID MMD CIRCUIT TOPOLOGY 88
5.2.2 TRIPLE DIVIDE-BY-1/1.5, -2/1, -2/3 DIVIDER CELL 92
5.2.2.1 DIVIDE-BY-1/1.5 DIVIDER CELL 93
5.2.2.2 DIVIDE-BY-2/1 DIVIDER CELL 95
5.2.2.3 DIVIDE-BY-2/3 DIVIDER CELL 96
5.2.3 DESIGN CONSIDERATIONS FOR TRIPLE-MODULUS DIVIDER CELL 98
5.2.3.1 TIMING ISSUE 98
5.2.3.2 INPUTS FOR DOUBLE-EDGE-TRIGGERED DFF 99
5.2.4 ACTIVE-INDUCTOR-BASED DIGITAL LOGICS WITH SELF-POWER-SAVING SCHEME 99
5.2.4.1 BANDWIDTH EXTENSION TECHNIQUE FOR ACTIVE-INDUCTOR-BASED DIGITAL LOGICS 103
5.2.5 SIMULATION RESULTS 106
5.2.5.1 COMPARISON W/ & WO/ ACTIVE INDUCTOR LOADING FOR DIGITAL LOGIC CELL 106
5.2.5.2 COMPARISON BETWEEN DIFFERENT ARCHITECTURES OF LATCH FOR MMD 108
5.2.6 DESIGN CONSIDERATIONS FOR ACTIVE-INDUCTOR-BASED MMD 110
5.3 Experimental Results 111
5.3.1 DIVISION RATIOS MEASUREMENT 112
5.3.2 PHASE NOISE OF HYBRID MMD 116
5.3.3 INSTANTANEOUS FREQUENCY FLUCTUATION OF SSCG 117
Chapter 6 SSCG Jitter Measurement by Compliance Test to Similar USB 3.1 10 Gb/s 121
6.1 Dual SSC Mechanism SSCG 121
6.2 Measurement Environment 125
6.2.1 USB 3.1 TX NORMATIVE SETUP FOR COMPLIANCE TEST 125
6.2.2 SSC JITTER BY USB 3.1 TX COMPLIANCE TEST 125
6.3 Experimental Results 130
Chapter 7 Conclusions and Future Works 135
7.1 Conclusions 135
7.2 Future Works 137
References 139
Publication List 145
參考文獻 [1] B. Casper and F. O’Mahony, “Clocking analysis, implementation and measurement techniques for high-speed data links–A tutorial,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 1, pp. 17–39, Jan. 2009.
[2] K. B. Hardin, J. T. Fessler, and D. R. Bush, “Spread spectrum clock generation for the reduction of radiated emissions,” in Proc. IEEE Int. Symp. Electromagn. Compat., 1994, pp. 227–231.
[3] Y. Matsumoto, K. Fujii, and A. Sugiura, “An analytical method for determining the optimal modulating waveform for dithered clock generation,” IEEE Trans. Electromagn. Compat., vol. 47, no. 3, pp. 577–584, Aug. 2005.
[4] J. Kim, D. G. Kam, P. J. Jun, and J. Kim, “Spread spectrum clock generator with delay cell array to reduce the electromagnetic interference,” IEEE Trans. Electromagn. Compat., vol. 47, no. 4, pp. 908–920, Nov. 2005.
[5] Universal Serial Bus 3.1 Specification, Revision 1.0., USB Implementers Forum, Jul. 2013.
[6] H.-H. Chang, I.-H. Hua, and S.-I. Liu, “A spread spectrum clock generator with triangular modulation,” IEEE J. Solid-State Circuits, vol. 38, no. 4, pp. 673–676, Apr. 2003.
[7] Y.-B. Hsieh and Y.-H. Kao, “A fully integrated spread-spectrum clock generator by using direct VCO modulation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 7, pp. 1845–1853, Aug. 2008.
[8] Y.-H. Kao and Y.-B. Hsieh, “A low-power and high-precision spread spectrum clock generator for serial advanced technology attachment applications using two-point modulation,” IEEE Trans. Electromagn. Compat., vol. 51, no. 2, pp. 245–254, May. 2009.
[9] M. Aoyama et al., “3 Gbps, 5000 ppm spread spectrum serdes PHY with frequency tracking phase interpolators for serial ATA,” in Symp. VLSI Circuits Dig., Jun. 2003, pp. 107–110.
[10] M. Sugawara et al., “1.5 Gbps, 5150 ppm spread spectrum serdes PHY with a 0.3 mW, 1.5 Gbps level detector for serial ATA,” in Symp. VLSI Circuits Dig., Jun. 2002, pp. 60–63.
[11] H.-R. Lee, O. Kim, G. Ahn, and D.-K. Jeong, “A low-jitter 5000ppm spread spectrum clock generator for multi-channel SATA transceiver in 0.18μm CMOS,” in IEEE Int. Solid-State Circuit Conf. Dig. Tech. Papers, Feb. 2005, pp. 162–163.
[12] M. Kokubo et al., “Spread-spectrum clock generator for serial ATA using fractional PLL controlled by ΣΔ modulator with level shifter,” in IEEE Int. Solid-State Circuit Conf. Dig. Tech. Papers, Feb. 2005, pp. 160–161.
[13] J. Shin et al., “A low-jitter added SSCG with seamless phase selection and fast AFC for 3rd generation serial-ATA,” in Proc. IEEE Custom Integrated Circuits Conf., Sep. 2006, pp. 409–412.
[14] D.-S. Shen and S.-I. Liu, “A low-jitter spread spectrum clock generator using FDMP,”IEEE Trans. Circuits Syst. II, Express Briefs, vol. 54, no. 11, pp. 979–983, Nov. 2007.
[15] C.-Y. Yang, C.-H. Chang, and W.-G. Wong, “A Δ-Σ PLL-based spread spectrum clock generator with a ditherless fractional topology,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 1, pp. 51–59, Jan. 2009.
[16] T. Kawamoto and M. Kokubo, “A low-jitter 1.5-GHz and 350-ppm spread-spectrum serial ATA PHY using reference clock with 400-ppm production-frequency tolerance,” in Proc. IEEE European Solid-State Circuits Conf., Sep. 2008, pp. 174–177.
[17] M. Song, et al., “A 1.5 GHz spread spectrum clock generator with a 5000ppm piecewise linear modulation,” in Proc. IEEE Custom Integrated Circuits Conf., Sep. 2008, pp. 455–458.
[18] T. Ebuchi et al., “A 125–1250 MHz process-independent adaptive bandwidth spread spectrum clock generator with digital controlled self-calibration,” IEEE J. Solid-State Circuits, vol. 44, no. 3, pp. 763–774, Mar. 2009.
[19] P.-Y. Wang and S.-P. Chen, “Spread spectrum clock generator,” IEEE Asian Solid-State Circuits Conf., 2007, pp. 304–307.
[20] SATA: High Speed Serialized AT Attachment,” Revision 3.0, Serial ATA Workgroup, Apr. 2009.
[21] S.-Y. Lin and S.-I. Liu, “A 1.5 GHz all-digital spread-spectrum clock generator,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3111–3119, Nov. 2009.
[22] I.-T. Lee, S.-H. Ku, and S.-I. Liu, “An all-digital spread spectrum clock generator with self-calibration bandwidth,” IEEE J. Solid-State Circuits, vol. 60, no. 11, pp. 2813–2822, Nov. 2013.
[23] C.-H. Wong and T.-C. Lee, “A 6-Ghz self-oscillating spread spectrum clock generator,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 5, pp. 1264–1273, May 2013.
[24] F. Pareschi, G. Setti, and R. Rovatti, “A 3-GHz serial ATA spread-spectrum clock generator employing a chaotic PAM modulation,” IEEE Trans. Circuits Syst. I, Reg. papers, vol.57, no. 10, pp. 2577–2587, Oct. 2010.
[25] C.-Y. Yang, C.-H. Chang, and W.-G. Wong, “A 3.2-GHz down-spread spectrum clock generator using a nested fractional topology,” IEICE Trans. Fundamentals, vol. E91-A, no. 2, pp. 493–503, Feb. 2008.
[26] W. Rhee, and A. Ali, “An on-chip phase compensation technique in fractional-N frequency synthesis,” in Proc. IEEE Int. Symp. Circuits Syst., pp. 363–366, May. 1999.
[27] M. Zanuso et al., “Time-to-digital converter for frequency synthesis based on a digital bang-bang DLL,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 3, pp. 548–555, Mar. 2010.
[28] S. Damphousse et al., “All digital spread spectrum clock generator for EMI reduction,” IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 145–150, Jan. 2007.
[29] D. D. Caro et al., “A 1.27 GHz, all-digital spread spectrum clock generator/synthesizer in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 5, pp. 1048–1060, May. 2010.
[30] C.-H. Park, O. Kim, and B. Kim, “A 1.8-GHz self-calibrated phase-locked loop with precise I/Q matching,” IEEE J. Solid-State Circuits, vol. 36, no. 5, pp. 777–783, May 2001.
[31] S. Levantino et al., “Phase noise in digital frequency dividers,” IEEE J. Solid-State Circuits, vol. 39, no. 5, pp. 775–784, May. 2004.
[32] B. Razavi, Design of Integrated Circuits for Optical Communications. NY: McGraw-Hill, 2012.
[33] B. Razavi, Design of Analog CMOS Integrated Circuits. NJ: Prentice-Hall, 2000.
[34] P. K. Hanumolu et al., “A sub-picosecond resolution 0.5–1.5 GHz digital-to-phase converter,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 414–424, Feb. 2008.
[35] H. S. Black, Modulation Theory. NY: Van Nostrand, 1953.
[36] A. D. Berny, A. M. Niknejad, and R. G. Meyer, “A 1.8-GHz LC VCO with 1.3-GHz tuning range and digital amplitude calibration,” IEEE J. Solid-State Circuits, vol. 40, no. 4, pp. 909–917, Apr. 2005.
[37] C. S. Vaucher et al., “A family of low-power truly modular programmable dividers in standard 0.35-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 35, no. 7, pp. 1039–1045, Jul. 2000.
[38] Y.-C. Yang et al., “ A quantization noise suppression technique for ΔΣ fractional-N frequency synthesizers,” IEEE J. Solid-State Circuits, vol. 41, no. 11, pp. 2500–2511, Nov. 2006.
[39] B. W. Garlepp et al., “A portable digital DLL for high-speed CMOS interface circuits,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 632–644, May. 1999.
[40] S. Sidiropoulos and M. A. Horowitz, “A semidigital dual delay-locked loop,” IEEE J. Solid-State Circuits, vol. 32, no. 11, pp. 1683–1692, Nov. 1997.
[41] D. Weinlader et al., “An eight channel 36GSample/s CMOS timing analyzer,” in IEEE Int. Solid-State Circuit Conf. Dig. Tech. Papers, Feb. 2000, pp. 170–171.
[42] K.-Y. K. Chang et al., “A 0.4–4-Gb/s CMOS quad transceiver cell using on-chip regulated dual-loop PLLs,” IEEE J. Solid-State Circuits, vol. 38, no. 5, pp. 747–754, May. 2003.
[43] H.-C. Lee et al., “Improving CDR performance via estimation,” in IEEE Int. Solid-State Circuit Conf. Dig. Tech. Papers, Feb. 2006, pp. 1296–1303.
[44] HSPICE User Guide, Ver. C-2009.03, Analyzing Electrical Yields, 2009.
[45] EZJIT and EZJIT Plus Jitter Analysis Software for Infiniium Series Oscilloscopes, Agilent Technologies Inc., 2010.
[46] Overview on Phase Noise and Jitter, Agilent Technologies Inc., 2001.
[47] C.-H. Heng and B.-S. Song, “A 1.8-GHz CMOS fractional-N frequency synthesizer with randomized multiphase VCO,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 848–854, Jun. 2003.
[48] L. Zhang et al., “A hybrid spur compensation technique for finite-modulo fractional-N phase-locked-loops,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 2922–2934, Nov. 2009.
[49] M. Zanuso et al., “ A 3MHz-BW 3.6GHz digital fractional-N PLL with sub-gate-delay TDC, phase-interpolation divider, and digital mismatch cancellation,” in IEEE Int. Solid-State Circuit Conf. Dig. Tech. Papers, Feb. 2010, pp. 476–477.
[50] K. Kaviani et al., “A tri-modal 20-Gbps/link differential/DDR3/GDDR5 memory interface,” IEEE J. Solid-State Circuits, vol. 47, no. 4, pp. 926–937, Apr. 2012.
[51] Y. A. Eken and J. P. Uyemura, “A 5.9-GHz voltage-controlled ring oscillator in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 230–233, Jan. 2004.
[52] B. Soltanian et al., “An ultra-compact differentially tuned 6-GHz CMOS LC-VCO with dynamic common-mode feedback,” IEEE J. Solid-State Circuits, vol. 42, no. 8, pp. 1635–1641, Aug. 2007.
[53] B. Sadhu, J. Kim, and R. Harjani, “A CMOS 3.3–8.4 GHz wide tuning range, low phase noise LC VCO,” in Proc. IEEE Custom Integrated Circuits Conf., Sep. 2009, pp. 559–562.
[54] T.-H. Lin and W. J. Kaiser, “A 900-MHz 2.5-mA CMOS frequency synthesizer with an automatic SC tuning loop,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 424–431, Mar. 2001.
[55] T.-H. Lin and Y.-J. Lai, “An agile VCO frequency calibration technique for a 10-GHz CMOS PLL ,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 340–349, Mar. 2007.
[56] A. Aktas and M. Ismail, “CMOS PLL calibration techniques,” IEEE Circuits Devices Mag., vol. 20, no. 5, pp. 6–11, Sept./Oct. 2004.
[57] W. B. Wilson et al., “A CMOS self-calibrating frequency synthesizer,” IEEE J. Solid-State Circuits, vol. 35, no. 10, pp. 1437–1444, Oct. 2000.
[58] A. Thanachayanont and A. Payne, “VHF CMOS integrated active inductor,” Electron. Lett., vol. 32, no. 11, pp. 999–1000, May 1996.
[59] R. Mukhopadhyay et al., “Reconfigurable RFICs in Si-based technologies for a compact intelligent RF front-end,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 1, pp. 81–93, Jan. 2005.
[60] S. Min et al., “A 90-nm CMOS 5-GHz ring-oscillator PLL with delay-discriminator- based active phase-noise cancellation,” IEEE J. Solid-State Circuits, vol. 48, no. 5, pp. 1151–1160, May 2013.
[61] J.-M. Kim et al., “A low-noise four-stage voltage-controlled ring oscillator in deep-submicrometer CMOS technology,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60, no. 2, pp. 71–75, Feb. 2013.
[62] J. Xu, C. E. Saavedra, and G. Chen, “An active inductor-based VCO with wide tuning range and high DC-to-RF power efficiency,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 8, pp. 462–466, Aug. 2011.
[63] Y. Chen and K. Mouthaan, “Wideband varactorless LC VCO using a tunable negative-inductance cell,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 10, pp. 2609–2617, Oct. 2010.
[64] D. Hauspie, E.-C. Park, and J. Craninckx, “Wideband VCO with simultaneous switching of frequency band, active core, and varactor size,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1472–1480, Jul. 2007.
[65] L.-H. Lu, H.-H. Hsieh, and Y.-T. Liao, “A wide tuning-range CMOS VCO with a differential tunable active inductor,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 9, pp. 3462–3468, Sep. 2006.
[66] S. Levantino et al., “Frequency dependence on bias current in 5-GHz CMOS VCOs: impact on tuning range and flicker noise upconversion,” IEEE J. Solid-State Circuits, vol. 37, no. 8, pp. 1003–1011, Aug. 2002.
[67] Z. Safarian and H. Hashemi, “Wideband multi-mode CMOS VCO design using coupled inductors,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 8, pp. 1830–1843, Aug. 2009.
[68] D. Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LC VCOs,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 896–909, Jun. 2001.
[69] A. Hajimiri and T. H. Lee,“A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
[70] S. Pamarti, L. Jansson, and I. Galton, “A wideband 2.4-GHz delta-sigma fractional-N PLL with 1-Mb/s in-loop modulation,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 49–62, Jan. 2004.
[71] S. E. Meninger and M. H. Perrott, “A 1-MHz bandwidth 3.6-GHz 0.18 μm CMOS fractional-N synthesizer utilizing a hybrid PFD/DAC structure for reduced broadband phase noise,” IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 966–980, Apr. 2006.
[72] X. Yu et al., “A ΔΣ fractional-N synthesizer with customized noise shaping for WCDMA/ HSDPA applications,” IEEE J. Solid-State Circuits, vol. 44, no. 8, pp. 2193–2201, Aug. 2009.
[73] M. Ali and E. Hegazi, “A multigigihertz multimodulus frequency divider in 90-nm CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 12, pp. 1333–1337, Dec. 2006.
[74] S.-Y. Wang et al., “Low power design of multi-modulus programmable frequency divider,” Electron. Lett., vol. 45, no. 20, pp. 1017–1019, Sep. 2009.
[75] Q. J. Gu and Z. Guo, “A CMOS high speed multi-modulus divider with retiming for jitter suppression,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 10, pp. 554–556, Oct. 2013.
[76] C.-S. Lin, T.-H. Chien, and C.-L Wey, “A 5.5-GHz 1-mW full-modulus- range programmable frequency divider in 90-nm CMOS process,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 9, pp. 550–554, Sep. 2011.
[77] Y. Moon, S.-H. Lee, and D. Shim, “A divide-by-16.5 circuit for 10-Gb ethernet transceiver in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 5, pp. 1175–1179, May. 2005.
[78] X. P. Yu et al., “Design of a low power wideband high resolution programmable frequency divider,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, no. 9, pp. 1098– 1103, Sep. 2005.
[79] K.-Y. Kim, W.-K. Lee, H. Kim, and S.-W. Kim, “Low-power program- mable divider for multi-standard frequency synthesizers using reset and modulus signal generator,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2008, pp. 77–80.
[80] V. K. Manthena et al., “A low-power single-phase clock multiband flexible divider,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 2, pp. 376–380, Feb. 2012.
[81] J. Jin et al., “Quantization noise suppression in fractional-N PLLs utilizing glitch-free phase switching multi-modulus frequency divider,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 5, pp. 926–937, May 2012.
[82] N. Krishnapura and P. R. Kinget, “A 5.3-GHz programmable divider for HiPerLAN in 0.25-μm CMOS,” IEEE J. Solid-State Circuits, vol. 35, no. 7, pp. 1019–1024, Jul. 2000.
[83] Y.-H. Peng and L.-H. Lu, “A 16-GHz triple-modulus phase-switching prescaler and its application to a 15-GHz frequency synthesizer in 0.18-μm CMOS,” IEEE Trans. Microw. Theory. Tech., vol. 55, no. 1, pp. 44–51, Jan. 2007.
[84] B. A. Floyd, “Sub-integer frequency synthesis using phase-rotating frequency dividers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 7, pp. 1823–1833, Aug. 2008.
[85] S. Pellerano, P. Madoglio, and Y. Palaskas, “A 4.75-GHz fractional frequency divider-by-1.25 with TDC-based all-digital spur calibration in 45-nm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3422– 3433, Dec. 2009.
[86] M. Alioto, R. Mita, and G. Palumbo, “Design of high-speed power- efficient MOS current-mode logic frequency divider,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 11, pp. 1333–1337, Nov. 2006.
[87] R. Nonis et al., “A design methodology for MOS current-mode logic frequency dividers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 2, pp. 245–254, Feb. 2007.
[88] W. Rhee, B. S. Song, and A. Ali, “A 1.1-GHz CMOS fractional-N frequency synthesizer with a 3-b third-order ΔΣ modulator,” IEEE J. Solid-State Circuits, vol. 35, no. 10, pp. 1453–1460, Oct. 2000.
[89] M.H. Perrott, M.D. Trott, and C.G. Sodini, “A modeling approach for Σ–Δ fractional-N frequency synthesizers allowing straightforward noise analysis,” IEEE J. Solid-State Circuits, vol. 37, pp. 1028–1038, Aug. 2002.
[90] B. Razavi, RF Microelectronics, 2nd ed., NJ: Prentice-Hall, 2011.
[91] S. S. Mohan et al., “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 346–355, Mar. 2000.
指導教授 鄭國興(Kuo-Hsing Cheng) 審核日期 2014-11-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明