參考文獻 |
[1] B. Casper and F. O’Mahony, “Clocking analysis, implementation and measurement techniques for high-speed data links–A tutorial,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 1, pp. 17–39, Jan. 2009.
[2] K. B. Hardin, J. T. Fessler, and D. R. Bush, “Spread spectrum clock generation for the reduction of radiated emissions,” in Proc. IEEE Int. Symp. Electromagn. Compat., 1994, pp. 227–231.
[3] Y. Matsumoto, K. Fujii, and A. Sugiura, “An analytical method for determining the optimal modulating waveform for dithered clock generation,” IEEE Trans. Electromagn. Compat., vol. 47, no. 3, pp. 577–584, Aug. 2005.
[4] J. Kim, D. G. Kam, P. J. Jun, and J. Kim, “Spread spectrum clock generator with delay cell array to reduce the electromagnetic interference,” IEEE Trans. Electromagn. Compat., vol. 47, no. 4, pp. 908–920, Nov. 2005.
[5] Universal Serial Bus 3.1 Specification, Revision 1.0., USB Implementers Forum, Jul. 2013.
[6] H.-H. Chang, I.-H. Hua, and S.-I. Liu, “A spread spectrum clock generator with triangular modulation,” IEEE J. Solid-State Circuits, vol. 38, no. 4, pp. 673–676, Apr. 2003.
[7] Y.-B. Hsieh and Y.-H. Kao, “A fully integrated spread-spectrum clock generator by using direct VCO modulation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 7, pp. 1845–1853, Aug. 2008.
[8] Y.-H. Kao and Y.-B. Hsieh, “A low-power and high-precision spread spectrum clock generator for serial advanced technology attachment applications using two-point modulation,” IEEE Trans. Electromagn. Compat., vol. 51, no. 2, pp. 245–254, May. 2009.
[9] M. Aoyama et al., “3 Gbps, 5000 ppm spread spectrum serdes PHY with frequency tracking phase interpolators for serial ATA,” in Symp. VLSI Circuits Dig., Jun. 2003, pp. 107–110.
[10] M. Sugawara et al., “1.5 Gbps, 5150 ppm spread spectrum serdes PHY with a 0.3 mW, 1.5 Gbps level detector for serial ATA,” in Symp. VLSI Circuits Dig., Jun. 2002, pp. 60–63.
[11] H.-R. Lee, O. Kim, G. Ahn, and D.-K. Jeong, “A low-jitter 5000ppm spread spectrum clock generator for multi-channel SATA transceiver in 0.18μm CMOS,” in IEEE Int. Solid-State Circuit Conf. Dig. Tech. Papers, Feb. 2005, pp. 162–163.
[12] M. Kokubo et al., “Spread-spectrum clock generator for serial ATA using fractional PLL controlled by ΣΔ modulator with level shifter,” in IEEE Int. Solid-State Circuit Conf. Dig. Tech. Papers, Feb. 2005, pp. 160–161.
[13] J. Shin et al., “A low-jitter added SSCG with seamless phase selection and fast AFC for 3rd generation serial-ATA,” in Proc. IEEE Custom Integrated Circuits Conf., Sep. 2006, pp. 409–412.
[14] D.-S. Shen and S.-I. Liu, “A low-jitter spread spectrum clock generator using FDMP,”IEEE Trans. Circuits Syst. II, Express Briefs, vol. 54, no. 11, pp. 979–983, Nov. 2007.
[15] C.-Y. Yang, C.-H. Chang, and W.-G. Wong, “A Δ-Σ PLL-based spread spectrum clock generator with a ditherless fractional topology,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 1, pp. 51–59, Jan. 2009.
[16] T. Kawamoto and M. Kokubo, “A low-jitter 1.5-GHz and 350-ppm spread-spectrum serial ATA PHY using reference clock with 400-ppm production-frequency tolerance,” in Proc. IEEE European Solid-State Circuits Conf., Sep. 2008, pp. 174–177.
[17] M. Song, et al., “A 1.5 GHz spread spectrum clock generator with a 5000ppm piecewise linear modulation,” in Proc. IEEE Custom Integrated Circuits Conf., Sep. 2008, pp. 455–458.
[18] T. Ebuchi et al., “A 125–1250 MHz process-independent adaptive bandwidth spread spectrum clock generator with digital controlled self-calibration,” IEEE J. Solid-State Circuits, vol. 44, no. 3, pp. 763–774, Mar. 2009.
[19] P.-Y. Wang and S.-P. Chen, “Spread spectrum clock generator,” IEEE Asian Solid-State Circuits Conf., 2007, pp. 304–307.
[20] SATA: High Speed Serialized AT Attachment,” Revision 3.0, Serial ATA Workgroup, Apr. 2009.
[21] S.-Y. Lin and S.-I. Liu, “A 1.5 GHz all-digital spread-spectrum clock generator,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3111–3119, Nov. 2009.
[22] I.-T. Lee, S.-H. Ku, and S.-I. Liu, “An all-digital spread spectrum clock generator with self-calibration bandwidth,” IEEE J. Solid-State Circuits, vol. 60, no. 11, pp. 2813–2822, Nov. 2013.
[23] C.-H. Wong and T.-C. Lee, “A 6-Ghz self-oscillating spread spectrum clock generator,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 5, pp. 1264–1273, May 2013.
[24] F. Pareschi, G. Setti, and R. Rovatti, “A 3-GHz serial ATA spread-spectrum clock generator employing a chaotic PAM modulation,” IEEE Trans. Circuits Syst. I, Reg. papers, vol.57, no. 10, pp. 2577–2587, Oct. 2010.
[25] C.-Y. Yang, C.-H. Chang, and W.-G. Wong, “A 3.2-GHz down-spread spectrum clock generator using a nested fractional topology,” IEICE Trans. Fundamentals, vol. E91-A, no. 2, pp. 493–503, Feb. 2008.
[26] W. Rhee, and A. Ali, “An on-chip phase compensation technique in fractional-N frequency synthesis,” in Proc. IEEE Int. Symp. Circuits Syst., pp. 363–366, May. 1999.
[27] M. Zanuso et al., “Time-to-digital converter for frequency synthesis based on a digital bang-bang DLL,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 3, pp. 548–555, Mar. 2010.
[28] S. Damphousse et al., “All digital spread spectrum clock generator for EMI reduction,” IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 145–150, Jan. 2007.
[29] D. D. Caro et al., “A 1.27 GHz, all-digital spread spectrum clock generator/synthesizer in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 5, pp. 1048–1060, May. 2010.
[30] C.-H. Park, O. Kim, and B. Kim, “A 1.8-GHz self-calibrated phase-locked loop with precise I/Q matching,” IEEE J. Solid-State Circuits, vol. 36, no. 5, pp. 777–783, May 2001.
[31] S. Levantino et al., “Phase noise in digital frequency dividers,” IEEE J. Solid-State Circuits, vol. 39, no. 5, pp. 775–784, May. 2004.
[32] B. Razavi, Design of Integrated Circuits for Optical Communications. NY: McGraw-Hill, 2012.
[33] B. Razavi, Design of Analog CMOS Integrated Circuits. NJ: Prentice-Hall, 2000.
[34] P. K. Hanumolu et al., “A sub-picosecond resolution 0.5–1.5 GHz digital-to-phase converter,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 414–424, Feb. 2008.
[35] H. S. Black, Modulation Theory. NY: Van Nostrand, 1953.
[36] A. D. Berny, A. M. Niknejad, and R. G. Meyer, “A 1.8-GHz LC VCO with 1.3-GHz tuning range and digital amplitude calibration,” IEEE J. Solid-State Circuits, vol. 40, no. 4, pp. 909–917, Apr. 2005.
[37] C. S. Vaucher et al., “A family of low-power truly modular programmable dividers in standard 0.35-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 35, no. 7, pp. 1039–1045, Jul. 2000.
[38] Y.-C. Yang et al., “ A quantization noise suppression technique for ΔΣ fractional-N frequency synthesizers,” IEEE J. Solid-State Circuits, vol. 41, no. 11, pp. 2500–2511, Nov. 2006.
[39] B. W. Garlepp et al., “A portable digital DLL for high-speed CMOS interface circuits,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 632–644, May. 1999.
[40] S. Sidiropoulos and M. A. Horowitz, “A semidigital dual delay-locked loop,” IEEE J. Solid-State Circuits, vol. 32, no. 11, pp. 1683–1692, Nov. 1997.
[41] D. Weinlader et al., “An eight channel 36GSample/s CMOS timing analyzer,” in IEEE Int. Solid-State Circuit Conf. Dig. Tech. Papers, Feb. 2000, pp. 170–171.
[42] K.-Y. K. Chang et al., “A 0.4–4-Gb/s CMOS quad transceiver cell using on-chip regulated dual-loop PLLs,” IEEE J. Solid-State Circuits, vol. 38, no. 5, pp. 747–754, May. 2003.
[43] H.-C. Lee et al., “Improving CDR performance via estimation,” in IEEE Int. Solid-State Circuit Conf. Dig. Tech. Papers, Feb. 2006, pp. 1296–1303.
[44] HSPICE User Guide, Ver. C-2009.03, Analyzing Electrical Yields, 2009.
[45] EZJIT and EZJIT Plus Jitter Analysis Software for Infiniium Series Oscilloscopes, Agilent Technologies Inc., 2010.
[46] Overview on Phase Noise and Jitter, Agilent Technologies Inc., 2001.
[47] C.-H. Heng and B.-S. Song, “A 1.8-GHz CMOS fractional-N frequency synthesizer with randomized multiphase VCO,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 848–854, Jun. 2003.
[48] L. Zhang et al., “A hybrid spur compensation technique for finite-modulo fractional-N phase-locked-loops,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 2922–2934, Nov. 2009.
[49] M. Zanuso et al., “ A 3MHz-BW 3.6GHz digital fractional-N PLL with sub-gate-delay TDC, phase-interpolation divider, and digital mismatch cancellation,” in IEEE Int. Solid-State Circuit Conf. Dig. Tech. Papers, Feb. 2010, pp. 476–477.
[50] K. Kaviani et al., “A tri-modal 20-Gbps/link differential/DDR3/GDDR5 memory interface,” IEEE J. Solid-State Circuits, vol. 47, no. 4, pp. 926–937, Apr. 2012.
[51] Y. A. Eken and J. P. Uyemura, “A 5.9-GHz voltage-controlled ring oscillator in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 230–233, Jan. 2004.
[52] B. Soltanian et al., “An ultra-compact differentially tuned 6-GHz CMOS LC-VCO with dynamic common-mode feedback,” IEEE J. Solid-State Circuits, vol. 42, no. 8, pp. 1635–1641, Aug. 2007.
[53] B. Sadhu, J. Kim, and R. Harjani, “A CMOS 3.3–8.4 GHz wide tuning range, low phase noise LC VCO,” in Proc. IEEE Custom Integrated Circuits Conf., Sep. 2009, pp. 559–562.
[54] T.-H. Lin and W. J. Kaiser, “A 900-MHz 2.5-mA CMOS frequency synthesizer with an automatic SC tuning loop,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 424–431, Mar. 2001.
[55] T.-H. Lin and Y.-J. Lai, “An agile VCO frequency calibration technique for a 10-GHz CMOS PLL ,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 340–349, Mar. 2007.
[56] A. Aktas and M. Ismail, “CMOS PLL calibration techniques,” IEEE Circuits Devices Mag., vol. 20, no. 5, pp. 6–11, Sept./Oct. 2004.
[57] W. B. Wilson et al., “A CMOS self-calibrating frequency synthesizer,” IEEE J. Solid-State Circuits, vol. 35, no. 10, pp. 1437–1444, Oct. 2000.
[58] A. Thanachayanont and A. Payne, “VHF CMOS integrated active inductor,” Electron. Lett., vol. 32, no. 11, pp. 999–1000, May 1996.
[59] R. Mukhopadhyay et al., “Reconfigurable RFICs in Si-based technologies for a compact intelligent RF front-end,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 1, pp. 81–93, Jan. 2005.
[60] S. Min et al., “A 90-nm CMOS 5-GHz ring-oscillator PLL with delay-discriminator- based active phase-noise cancellation,” IEEE J. Solid-State Circuits, vol. 48, no. 5, pp. 1151–1160, May 2013.
[61] J.-M. Kim et al., “A low-noise four-stage voltage-controlled ring oscillator in deep-submicrometer CMOS technology,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60, no. 2, pp. 71–75, Feb. 2013.
[62] J. Xu, C. E. Saavedra, and G. Chen, “An active inductor-based VCO with wide tuning range and high DC-to-RF power efficiency,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 8, pp. 462–466, Aug. 2011.
[63] Y. Chen and K. Mouthaan, “Wideband varactorless LC VCO using a tunable negative-inductance cell,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 10, pp. 2609–2617, Oct. 2010.
[64] D. Hauspie, E.-C. Park, and J. Craninckx, “Wideband VCO with simultaneous switching of frequency band, active core, and varactor size,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1472–1480, Jul. 2007.
[65] L.-H. Lu, H.-H. Hsieh, and Y.-T. Liao, “A wide tuning-range CMOS VCO with a differential tunable active inductor,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 9, pp. 3462–3468, Sep. 2006.
[66] S. Levantino et al., “Frequency dependence on bias current in 5-GHz CMOS VCOs: impact on tuning range and flicker noise upconversion,” IEEE J. Solid-State Circuits, vol. 37, no. 8, pp. 1003–1011, Aug. 2002.
[67] Z. Safarian and H. Hashemi, “Wideband multi-mode CMOS VCO design using coupled inductors,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 8, pp. 1830–1843, Aug. 2009.
[68] D. Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LC VCOs,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 896–909, Jun. 2001.
[69] A. Hajimiri and T. H. Lee,“A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
[70] S. Pamarti, L. Jansson, and I. Galton, “A wideband 2.4-GHz delta-sigma fractional-N PLL with 1-Mb/s in-loop modulation,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 49–62, Jan. 2004.
[71] S. E. Meninger and M. H. Perrott, “A 1-MHz bandwidth 3.6-GHz 0.18 μm CMOS fractional-N synthesizer utilizing a hybrid PFD/DAC structure for reduced broadband phase noise,” IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 966–980, Apr. 2006.
[72] X. Yu et al., “A ΔΣ fractional-N synthesizer with customized noise shaping for WCDMA/ HSDPA applications,” IEEE J. Solid-State Circuits, vol. 44, no. 8, pp. 2193–2201, Aug. 2009.
[73] M. Ali and E. Hegazi, “A multigigihertz multimodulus frequency divider in 90-nm CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 12, pp. 1333–1337, Dec. 2006.
[74] S.-Y. Wang et al., “Low power design of multi-modulus programmable frequency divider,” Electron. Lett., vol. 45, no. 20, pp. 1017–1019, Sep. 2009.
[75] Q. J. Gu and Z. Guo, “A CMOS high speed multi-modulus divider with retiming for jitter suppression,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 10, pp. 554–556, Oct. 2013.
[76] C.-S. Lin, T.-H. Chien, and C.-L Wey, “A 5.5-GHz 1-mW full-modulus- range programmable frequency divider in 90-nm CMOS process,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 9, pp. 550–554, Sep. 2011.
[77] Y. Moon, S.-H. Lee, and D. Shim, “A divide-by-16.5 circuit for 10-Gb ethernet transceiver in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 5, pp. 1175–1179, May. 2005.
[78] X. P. Yu et al., “Design of a low power wideband high resolution programmable frequency divider,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, no. 9, pp. 1098– 1103, Sep. 2005.
[79] K.-Y. Kim, W.-K. Lee, H. Kim, and S.-W. Kim, “Low-power program- mable divider for multi-standard frequency synthesizers using reset and modulus signal generator,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2008, pp. 77–80.
[80] V. K. Manthena et al., “A low-power single-phase clock multiband flexible divider,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 2, pp. 376–380, Feb. 2012.
[81] J. Jin et al., “Quantization noise suppression in fractional-N PLLs utilizing glitch-free phase switching multi-modulus frequency divider,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 5, pp. 926–937, May 2012.
[82] N. Krishnapura and P. R. Kinget, “A 5.3-GHz programmable divider for HiPerLAN in 0.25-μm CMOS,” IEEE J. Solid-State Circuits, vol. 35, no. 7, pp. 1019–1024, Jul. 2000.
[83] Y.-H. Peng and L.-H. Lu, “A 16-GHz triple-modulus phase-switching prescaler and its application to a 15-GHz frequency synthesizer in 0.18-μm CMOS,” IEEE Trans. Microw. Theory. Tech., vol. 55, no. 1, pp. 44–51, Jan. 2007.
[84] B. A. Floyd, “Sub-integer frequency synthesis using phase-rotating frequency dividers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 7, pp. 1823–1833, Aug. 2008.
[85] S. Pellerano, P. Madoglio, and Y. Palaskas, “A 4.75-GHz fractional frequency divider-by-1.25 with TDC-based all-digital spur calibration in 45-nm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3422– 3433, Dec. 2009.
[86] M. Alioto, R. Mita, and G. Palumbo, “Design of high-speed power- efficient MOS current-mode logic frequency divider,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 11, pp. 1333–1337, Nov. 2006.
[87] R. Nonis et al., “A design methodology for MOS current-mode logic frequency dividers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 2, pp. 245–254, Feb. 2007.
[88] W. Rhee, B. S. Song, and A. Ali, “A 1.1-GHz CMOS fractional-N frequency synthesizer with a 3-b third-order ΔΣ modulator,” IEEE J. Solid-State Circuits, vol. 35, no. 10, pp. 1453–1460, Oct. 2000.
[89] M.H. Perrott, M.D. Trott, and C.G. Sodini, “A modeling approach for Σ–Δ fractional-N frequency synthesizers allowing straightforward noise analysis,” IEEE J. Solid-State Circuits, vol. 37, pp. 1028–1038, Aug. 2002.
[90] B. Razavi, RF Microelectronics, 2nd ed., NJ: Prentice-Hall, 2011.
[91] S. S. Mohan et al., “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 346–355, Mar. 2000.
|