參考文獻 |
參考文獻
[1] D. Kuzum, “Interface-engineered Ge MOSFETs for future high performance CMOS applications,” dissertation for the degree of doctor, Stanford university (2009).
[2] M. Lundstrom, “Elementary scattering theory of the Si MOSFET,” IEEE Electron Device Lett., 18, 361 (1997).
[3] Y. Oshima, M. Shandalov, Y. Sun, P. Pianetta, and P. C. McIntyre, “Hafnium oxide/germanium oxynitride gate stacks on germanium: Capacitance scaling and interface state density,” Appl. Phys. Lett., 94, 183102 (2009).
[4] Q. Xie, J. Musschoot, M. Schaekers, M. Caymax, A. Delabie, X. P. Qu, Y. L. Jiang, S. VandenBerghe, J. Liu, and C. Detavernier, “Ultrathin GeOxNy interlayer formed by in situ NH3 plasma pretreatment for passivation of germanium metal-oxide-semiconductor devices,” Appl. Phys. Lett., 97, 222902 (2010).
[5] N. Wu, Q. Zhang, C. Zhu, D. S. H. Chan, A. Du, N. Balasubramanian, M. F. Li, A. Chin, J. K. O. Sin and D. L. Kwong, “A TaN-HfO2 Ge pMOSFET with Novel SiH4 surface passivation,” IEEE Electron Device Lett., 25, 631 (2004).
[6] J. Mitard, B. De Jaeger, F. E. Leys, G. Hellings, K. Martens, G. Eneman, D. P. Brunco, R. Loo, J. C. Lin, D. Shamiryan, T. Vandeweyer, G. Winderickx, E. Vrancken, C. H. Yu, K. De Meyer, M. Caymax, L. Pantisano, M. Meuris, M. Heyns, and M. Mitard, “Record ION/IOFF performance for 65 nm Ge pMOSFET and novel Si passivation scheme for improved EOT scalability,” Tech. Dig. Int. Electron Devices Meets., 873 (2008).
[7] D. Kuzum, T. Krishnamohan, A. J. Pethe, A. K. Okyay, Y. Oshima, Y. Sun, J. P. Mc Vittie, P. A. Pianetta, P. C. McIntyre, and K. C. Saraswat, “Ge-interface engineering with ozone oxidation for low interface-state density,” IEEE Electron Device Lett., 29, 328 (2008).
[8] H. Matsubara, T. Sasada, M. Takenaka, and S. Takagi, “Evidence of low interface trap density in GeO2/Ge metal-oxide-semiconductor structures fabricated by thermal oxidation,” Appl. Phys. Lett., 93, 032104 (2008).
[9] K. C. Saraswat, C. O. Chui, D. Kim, T. Krishnamohan, and A. Pethe, “High mobility materials and novel device structures for high performance nanoscale MOSFETs,” Tech. Dig. Int. Electron Devices Meets., 1 (2006).
[10] A. Satta, E. Simoen, T. Clarysse, T. Janssens, A. Benedetti, B. De Jaeger, M. Meuris, and W. Vandervorst, “Diffusion, activation, and recrystallization of boron implanted in preamorphized and crystalline germanium,” Appl. Phys. Lett., 87, 172109 (2005).
[11] P. Zimmerman, G. Nicholas, B. De Jaeger, B. Kaczer, A. Stesmans, L. A. Ragnarsson, D. P. Brunco, F. E. Leys, M. Caymax, G. Winderickx, K. Opsomer, M. Meuris, and M. M. Heyns, “High performance Ge pMOS devices using a Si-compatible process flow,” Tech. Dig. Int. Electron Devices Meets., 655 (2006).
[12] Y. Nakakita, R. Nakane, T. Sasada, H. Matsubara, M. Takenaka, and S. Takagi, “Interface-controlled self-align source/drain Ge pMOSFETs using thermally-oxidized GeO2 interfacial layers,” Tech. Dig. Int. Electron Devices Meets., 877 (2008).
[13] A. Satta, T. Janssens, T. Clarysse, E. Simoen, M. Meuris, A. Benedetti, I. Hoflijk, B. De Jaeger, C. Demeurisse, and W. Vandervorst, “P implantation doping of Ge: Diffusion, activation, and recrystallization,” J. Vac. Sci. Technol. B, 24, 494 (2006).
[14] C. O. Chui, L. Kulig, J. Moran, W. Tsai and K. C. Saraswat, “Germanium n-type shallow junction activation dependences,” Appl. Phys. Lett., 87, 091909 (2005).
[15] P. Tsipas, and A. Dimoulas, “Modeling of negatively charged states at the Ge surface and interfaces,” Appl. Phys. Lett., 94, 012114 (2009).
[16] A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E. K. Evangelou, “Fermi-level pinning and charge neutrality level in germanium,” Appl. Phys. Lett., 89, 252110 (2006).
[17] 張宇瑞,“鍺量子點在氮化矽中的形成機制與鍺量子點可見光光二極體的研製”,碩士論文,國立中央大學,民國100年。
[18] C. C. Wang, P. H. Liao, M. H. Kuo, T. George, and P. W. Li, “The curious case of exploding quantum dots: anomalous migration and growth behaviors of Ge under Si oxidation,” Nanoscale Res. Lett., 8, 192 (2013).
[19] 許庭嘉,“一體成型鍺量子點/二氧化矽/矽異質結構之形成與其介面工程探討”,碩士論文,國立中央大學,民國102年。
[20] M. H. Kuo, C. C. Wang, W. T. Lai, T. George, and P. W. Li, “Designer Ge quantum dots on Si: A heterostructure configuration with enhanced optoelectronic performance,” Appl. Phys. Lett., 101, 223107 (2012).
[21] P. H. Liao, T. C. Hsu, K. H. Chen, T. H. Cheng, T. M. Hsu, C. C. Wang, T. George, and P. W. Li, “Size-tunable strain engineering in Ge nanocrystals embedded within SiO2 and Si3N4,” Appl. Phys. Lett., 105, 172106 (2014).
[22] D. P. Bruno, B. De Jaeger, G. Eneman, J. Mitard, G. Hellings, A. Satta, V. Terzieva, L. Souriau, F. E. Leys, G. Pourtois, M. Houssa, G. Winderickx, E. Vrancken, S. Sioncke, K. Opsomer, G. Nicholas, M. Caymax, A. Stesmans, J. Van Steenbergen, P. W. Mertens, M. Meuris, and M. M. Heyns, “Germanium MOSFET Devices: Advances in Materials Understanding, Process Development, and Electrical Performance,” J. Electrochem. Soc., 155, H552 (2008).
[23] S. Gaudet, C. Detavernier, A. J. Kellock, P. Desjardins, and C. Lavoie, “Thin film reaction of transition metals with germanium,” J. Vac. Sci. Technol. A, 24, 474 (2006).
[24] V. Carron, M. Ribeiro, P. Besson, G. Rolland, J. M. Hartmann, V. Loup, S. Minoret, L. Clavelier, C. Leoyer, and T. Billon, “Nickel selective etching studies for self-aligned silicide process in Ge and SiGe based devices,” ECS Trans., 3, 643 (2006).
[25] V. Carron, P. Besson, F. Pierre, “Wet Etching step evolution for selective removal on silicide or germanide applications,” ECS Trans., 11, 309 (2007).
[26] B. D. Jaeger, B. Kaczer, P. Zimmerman, K. Opsomer, G. Winderickx, J. Van Steenbergen, E. Van Moorhem, V. Terzieva, R. Bonzom, F. Leys, C. Arena, M. Bauer, C. Werkhoven, M. Caymax, M. Meuris and M. Heyns, “Ge deep sub-micron HiK/MG pFETs with superior drive compared to Si HiK/MG state-of-the-art reference,” Semicond. Sci. Technol., 22, S221 (2007).
[27] M. Tang, W. Huang, C. Li, H. Lai, and S. Chen, “Thermal stability of nickel germanide formed on tensile-strained Ge epilayer on Si substrate,” IEEE Electron Device Lett., 31, 863 (2010).
[28] C. Demeurisse, K. Opsomer, “Method for forming a self-aligned germanide and devices obtained thereof,” U. S. Patent, 20050196962 (2005).
[29] D. K. Schroder, Semiconductor Material and Device Characterization: Wiley (2006).
[30] C. N. Berglund, “Surface states at steam-grown silicon-silicon dioxide interfaces”, IEEE Trans. Electron Devices, 13, 701 (1966).
[31] L. M. Terman, “An investigation of surface states at a Silicon/Silicon Oxide interface employing metal-oxide-silicon diodes,” Solid-State Electron. 5, 285 (1962).
[32] R. Castagné, and A. Vapaille, “Description of SiO2-Si interface properties by means very low frequency MOS capacitance measurements,” Surf. Sci. 28, 157 (1971).
[33] K. Martens, C. O. Chui, G. Brammertz, B. De Jaeger, D. Kuzum, M. Meuris, M. M. Heyns, T. Krishnamohan, K. Saraswat, H. E. Maes, and G. Groeseneken, “On the correct extraction of interface trap density of MOS devices with high-mobility semiconductor substrates,” IEEE Trans. Electron Devices, 55, 547 (2008).
[34] J. S. Brugler, and P. G. A. Jespers, “Charge pumping in MOS devices,” IEEE Trans. Electron Devices, 16, 297 (1969).
[35] E. H. Nicollian, and J. R. Brews, MOS Physics and Technology: Wiley (2003).
[36] D. K. Nayak, K. Kamjoo, J. S. Park, J. C. S. Woo and K. Wang, “Rapid isothermal processing of strained GeSi layers,” IEEE Trans. Electron Devices, 39, 56 (1992).
|