博碩士論文 101521045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:72 、訪客IP:3.138.126.23
姓名 張嘉峯(Chia-Feng Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 高整合度帶通低雜訊放大器
(Highly Integrated Bandpass Low Noise Amplifier)
相關論文
★ 用於行動上網裝置之智慧型陣列天線★ 吸收式帶止濾波器之研製
★ 一維及二維切換式波束掃描陣列天線★ 寬頻微型化六埠網路接收機
★ 具有良好選擇度的寬頻吸收式帶止濾波器★ 微小化吸收式帶止濾波器之通帶改善
★ 共面波導帶通濾波器之研製★ 微帶耦合線帶通濾波器與雙工器研製
★ 宇宙微波背景輻射陣列望遠鏡接收機 之校準信號源研製★ K-Band及Q-Band毫米波帶通濾波器設計
★ 薄膜製程射頻被動元件設計★ 微波帶通低雜訊放大器設計
★ 積體式微波帶通濾波器之研製★ 應用於高位元率無線傳輸系統之V頻段漸進式開槽天線陣列
★ 以多重耦合線實現多功能帶通濾波器★ 以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文研究主軸為帶通濾波器與放大器之整合,並以此實現高整合度射頻前端接收系統,目標為整合帶通濾波器、低雜訊放大器以及平衡至非平衡轉換器等電路方塊,並藉由此整合性設計,改善傳統分時多工射頻通訊系統與各級元件串接所產生的不匹配損耗,並達到縮小面積,提高系統整合度的目的。
首先以濾波器植入損耗法設計出發,以可匹配至複數阻抗之帶通濾波器來設計低雜訊放大器的匹配電路,使其具有帶通的響應。電路之被動電路部分以低損耗的積體被動元件(IPD)製程來實現,並將AVAGO電晶體ATF-54143組裝於此IPD晶片上,從而將帶通濾波器以及低雜訊放大器整合至微型化之單一元件內。接續則提出具平衡至非平衡轉換功能之帶通濾波器,具有可額外設計零點的特性,藉以提高濾波器的選擇度,最後以之為基礎,實現具平衡至非平衡轉換功能之帶通低雜訊放大器。電路首先以 IPD製程結合AVAGO電晶體VMMK-1218 進行實做驗證,再利用GaAs製程一併實現主被動元件,完成整合度更高的具平衡至非平衡轉換功能之帶通低雜訊放大器。
本研究提出的具平衡至非平衡轉換功能之帶通低雜訊放大器,具有簡單明瞭的設計流程與設計公式,並於IPD與GaAs製程實做驗證其可行性,對於射頻前端電路的微小化、效能提升與降低組裝複雜度均有直接助益。
摘要(英) This study investigates the systematic method in designing a highly-integrated RF front-end system based on the integration of bandpass filter and low-noise amplifier (LNA). The target is to integrate the LNA, balun and band-pass filter into a single circuit. By this integrated design we can improve the mismatch loss of conventional RF front end system, and achieve the goal of circuit miniaturization and improve the level of system integration in RF front-end design.
The proposed design is based on the insertion loss method for filter design with complex load, such that the impedance matching network of the LNA can have a band-pass response. The passive parts of the proposed bandpass LNA are realized by a low-loss integrated passive device (IPD) process, while the AVAGO ATF-54143 transistor can be mounted on the IPD chip to achieve integration of bandpass filter and LNA in a single circuit with compact circuit size. Then, a new design of balun bandpass filter is proposed. The selectivity and stopband rejection of balun bandpass filter can be improved by the additional transmission zeros. It is then served as the basis of proposed single-to-balanced bandpass LNA designs. The first design is realized using the IPD process along with the AVAGO VMMK-1218 transistor. The second design is realized by the GaAs pseudomorphic high-eletron mobility transistor (PHEMT) process such that both the active and passive parts of the circuit can be realized on a single chip, and thus a higher level of integration can be achieved.
The proposed bandpass LNA designs feature simple design flow with explicit design equations. Their performances are verified using the IPD and GaAs pHEMT process. They can help minimize the circuit size, improving the system performance, and also reduce the complexity of system assembly for RF front-end designs.
關鍵字(中) ★ 具平衡至非平衡轉換器
★ 帶通濾波器
★ 低雜訊放大器
關鍵字(英) ★ Balun
★ Bandpass Filter
★ Low Noise Amplifier
論文目次 論文摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 V
表目錄 XIII
第一章 緒論 1
1.1研究動機 1
1.2文獻回顧 2
1.3章節介紹 4
第二章 單晶化帶通低雜訊放大器 5
2.1 電路架構與理論 5
2.2 設計公式 9
2.2.1 串聯RLC電路負載 9
2.2.2 並聯RLC電路負載 11
2.3 帶通低雜訊放大器設計與理論 13
2.4 第二章結論 34
第三章 單晶化具平衡至非平衡轉換功能之帶通濾波器 37
3.1 電路架構與理論 38
3.2 具平衡至非平衡轉換功能之帶通濾波器(IPD版本) 44
3.3 具平衡至非平衡轉換功能之帶通濾波器(GAAS版本) 59
3.4 第三章結論 76
第四章 單晶化具平衡至非平衡轉換功能之帶通低雜訊放大器 80
4.1 具平衡至非平衡轉換功能之帶通低雜訊放大器設計與理論(IPD版本) 81
4.2 具平衡至非平衡轉換功能之帶通低雜訊放大器設計與理論(GAAS版本) 108
4.3 第四章結論 141
第五章 結論 144
參考文獻 146



參考文獻 [1] S.-F. Gong, A. Backström, M. Ågesjö, A. Serban, and M. Karlsson, “Integration of a 5-GHz radio front-end in PCB,” in Proc. High Density Microsystem Design and Packaging and Component Failure Analysis Conf., June 2006, pp. 146–148.
[2] D. Kim, D. H. Kim, J. I. Ryu,Y. Park, and J. C. Park, “A compact BT/WiFi dual-band dual-mode RF front-end module,” in Proc. Asia–Pacific Microw. Conf., Dec. 2011, pp. 110–113.
[3] W. T. Khan, S. Bhattacharya, C. Patterson, G. E. Ponchak, and J. Papapolymerou, “Low cost 60 GHz RF front end transceiver integrated on organic substrate,” in IEEE MTT-S Int. Microw. Symp. Dig., Baltimore, MD, June 2011, pp. 1–4.
[4] P.-H. Wu, S.-M. Wang, and M.-W. Lee, “Wi-Fi/WiMAX dual mode RF MMIC front-end module,” in IEEE Radio Frequency Integrated Circuits Symp. Dig.,Boston, MA, June 2009, pp. 289–292.
[5] S. E. Gunnarsson, C. Kärnfelt, H. Zirath, R. Kozhuharov, D. Kuylenstierna, A. Alping, and C. Fager, “Highly integrated 60 GHz transmitter and receiver MMICs in a GaAs pHEMT technology,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2174–2186, Nov. 2005.
[6] Y. Tsukahara, H. Amasuga, S. Goto, T. Oku and T. Ishikawa, “60 GHz high isolation SPDT MMIC switches using shunt pHEMT resonator , ” in IEEE MTT-S Int. Microwave Symp. Dig., pp. 1541-1544, Jun. 2008.
[7] D. Shaeffer and T. Lee, “A 1.5 V, 1.5 GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, pp.745 - 759 , May 1997.
[8] S. M. Luo, S. H. Weng, Y. L. Ye, C. H. Lin, C. N. Chung and H. Y. Chang, “24-GHz MMIC development using 0.15-μm GaAs PHEMT process for automotive radar applications,” in Asia Pacific Microwave Conference Proceedings, pp. 1-4, Dec. 2008.
[9] S. C. Shin, M. D. Tsai, R. C. Liu, K. Y. Lin and H. Wang, “A 24-GHz 3.9-dB NF low-noise amplifier using 0.18 µm CMOS technology”, IEEE Microwave Wireless Component Letter, vol. 15, no. 7, pp. 448-450, July 2005.
[10] T.-P. Wang, “A Low-voltage low-power K-band CMOS LNA using DC-current-path split technology,” IEEE Microw. Wireless Compon., vol. 20, no. 9, pp. 519-521, Sept. Very Large Scale Integration (VLSI) Systems, vol. 18, pp. 638-651 , Apr. 2010.
[11] T. K. Nguyen and S. G. Lee, “ A sub-mA, high-gain CMOS low-noise amplifier for 2.4 GHz applications,” in Proceedings of 2006 IEEE International Symposium on Circuits and Systems (ISCAS), May 2006.
[12] S.-C. Shin, M. D. Tsai, R. C. Liu, K. Y. Lin and H. Wang, “A 24-GHz 3.9-dB NF low-noise amplifier using 0.18 µm CMOS technology”, IEEE Microwave Wireless Component Letter, vol. 15, no. 7, pp. 448-450, July 2005.
[13] T.-P. Wang, “A Low-voltage low-power K-band CMOS LNA using DC-current-path split technology,” IEEE Microw. Wireless Compon., vol. 20, no. 9, pp. 519-521, Sept. 2010.
[14] A. Axholt, W. Ahmad and H. Sjöland, “A 90nm CMOS UWB LNA,” IEEE Norchip, pp. 25-28. Nov. 2008.
[15] P. Pieters , K. Vaesen , W. Diels , G. Carchon , S. Brebels , W. D. Raedt , E. Beyne and R. P. Mertens “High-Q integrated spiral inductors for high performance wireless front-end systems,” in Proc. IEEE Radio Wireless Conf., pp.251-254, Sep. 2000.
[16] J.-L. Chen, S.-F. Chang, C.-C. Liu and H.-W. Kuo, “Design of a 20-to-40 GHz bandpass MMIC amplifier,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1275–1278, Jun. 2003.
[17] A. Ismail and A. Abidi, “A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network,” IEEE J. Solid-State Circuits, vol. 39, pp. 2269-2277,Dec. 2004.
[18] M. Yang, M. Ha, Y. Park and Y. Eo, “A 3–10 GHz CMOS low-noise amplifier using wire bond inductors,” Microwave and Optocal Technology Letters, vol.51, no. 2, pp. 414-416, Feb.2009.
[19] S. M. Rezaul Hasan,. “Analysis and design of a multistage CMOS band-pass low-noise preamplifier for ultrawideband RF receiver,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 18, pp. 638-651 , Apr. 2010.

[20] Huang, G., Kim, S.-K. and Kim, B.-S., “A wideband LNA with active balun for DVB-T application,” IEEE Int. Symp. on Circuits and Systems, pp. 421–424, May 2009.
[21] Azevedo, F. , Fortes, F. , Rosario, M.J., “A 2.4GHz CMOS balun/LNA for IEEE 802.11b/g WLAN transceiver,” Design & Technology of Integrated Systems in Nanoscale Era, 2007. DTIS. International Conference on pp. 114–117, Sept. 2007.
[22] J. Li, R. Ma, L. Han, R. Yang, and Wenmei Zhang, “A Co-design Study of Low Noise Amplifier and Band-pass Filter,” Microwave and Millimeter Wave Technology (ICMMT), 2012 International Conference on pp. 1–3, May 2012.
[23] 鍾育軒, “微波帶通低雜訊放大器設計” 碩士論文, 國立中央大學, 2009.
[24] 王品傑, “以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統,” 碩士論文, 國立中央大學, June 2010.
[25] 吳建鋒, “以多重耦合線實現新式多功能微波元件,” 碩士論文, 國立中央大學, June 2011.
[26] 夏維凡, “應用於射頻前端系統之高整合度主動式帶通濾波器設計,” 碩士論文, 國立中央大學, June 2012.
[27] Y.-S. Lin, J.-F. Wu, W.-F. Hsia, P.-C. Wang, Y.-H. Chung, “Design of electronically switchable single-to-balanced bandpass low-noise amplifier,” IET Microwaves, Antennas & Propagation,vol. 7,no. 7,pp.510-517, May 2013.
[28] R. E. Lehmann and D. D. Heston, “X-Band monolithic series feedback LNA,” IEEE Trans. Microwave Theory Tech., vol. 33, no. 12, pp. 1560-1566, Dec. 1985.
[29] L. K. Yeung, K.-L. Wu, Y. E. Wang, “Low-temperature cofired ceramic LC filters for RF applications,” IEEE Microw. Mag., vol 9, no. 5, pp.118–128, Oct. 2008.
[30] Y. H. Chun, J. R. Lee, S, S. W. Yun, and J. K. Rhee, “ Design of an RF low-noise bandpass filter using active capacitance circuit,” IEEE Trans. Microw. Theory Tech.,vol. 53, NO. 2, pp.687 - 695, Feb. 2005.
[31] C.-H. Chen,C.-H. Huang “Integrated Transformer-Coupled Balun Bandpass Filters with an Optimal Common-Mode Rejection Ratio”IEEE Trans. on Components, Packaging and Manufacturing Technology, Vol. 2, No.1,Jan .2012.
[32] J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications. New York: Wiley, 2001, pp. 109–272.
[33] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters,Impedance Matching Networks, and Coupling Structures. New York:McGraw-Hill, 1964, ch. 8.
[34] C.-W. You and Y. S. Lin, “A 24-GHz Single-to-Balanced Multicoupled Line Bandpass Filter in CMOS Technology,” Proceedings of APMC 2012, Kaohsiung, Taiwan, Dec. 4-7,2012.
[35] C. L. Tsai and Y. S. Lin, “Analysis and design of single-to-balanced combline bandpass filters with two independently controllable transmission zeros in LTCC technology,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 11, pp. 2878–2887, Nov. 2010.
[36] C. L. Tsai and Y. S. Lin, “Compact inductorless CMOS low-noise amplifier for reconfigurable radio,” The Institution of Engineering and Technology Electronics Letters Vol. 50 No.12,June.2014,pp. 892-893
[37] K Liu, Frye, R.C., Ahn B., “ High rejection BPF for WiMAX applications from Silicon Integrated Passive Device technology,” Microwave Symposium Digest (MTT), 2010 IEEE MTT-S International , vol., no., pp.1364,1367, 23-28, May, 2010
[38] Y.-S Lin, C-W You, C-L Tsai, ”On-Chip Single-to-Balanced Multicoupled Line Bandpass Filters With Good Selectivity,” Microwave Theory and Techniques, IEEE Transactions on , vol.59, no.12, pp.3322,3330, Dec. 2011
[39] P. C Wang, Y-H Chung, Y-S Lin, ”Novel LNA-integrated bandpass switchplexer for highly integrated RF transceiver frontend design,” Microwave Conference Proceedings (APMC), 2012 Asia-Pacific , vol., no., pp.902,904, 4-7 Dec. 2012


指導教授 林祐生(Yo-Shen Lin) 審核日期 2015-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明