博碩士論文 101323030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:18.226.82.74
姓名 邱奕緯(Yi-wei Chiu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 不同陽極處理對7075-T6及7050-T6鋁合金耐腐蝕性質及疲勞強度分析
相關論文
★ 7005與AZ61A拉伸、壓縮之機械性質研究★ 雷射去除矽晶圓表面分子機載污染參數的最佳化分析
★ 球墨鑄鐵的超音波檢測★ 模具溫度對TV前框高亮光澤產品研討
★ 高強度7075-T4鋁合金之溫間成形研究★ 鎂合金燃燒、鑽削加工與表面處理之研究
★ 純鈦陽極處理技術之研發★ 鋁鎂合金陽極處理技術之研發
★ 電化學拋光處理、陽極處理中硫酸流速與封孔處理對陽極皮膜品質之影響★ 電解液溫度與鋁金屬板表面粗糙度對陽極處理後外觀的影響
★ 製程參數對A356鋁合金品質的影響及可靠度的評估★ 噴砂與前處理對鋁合金陽極皮膜品質的影響
★ 鎂合金回收重溶之品質與疲勞性質分析★ 鋁合金熱合氧化膜與陽極氧化膜成長行為之研究
★ 潤滑劑與製程參數對Al-0.8Mg-0.5Si鋁合金擠壓鑄件的影響★ 摩擦攪拌製程對AA5052鋁合金之微觀組織及對陽極皮膜的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究對7075-T6及7050-T6兩種材料進行三種不同的陽極處理,分別是一般陽極、低定電流硬化陽極和高定電流硬化陽極,陽極氧化膜的厚度皆控制在10um左右。封孔處理後對材料進行腐蝕測試,並記錄各材料的腐蝕電位(Ecor)及腐蝕速率(Icor)。利用光電子能譜儀(XPS)分析陽極皮膜的表面層和介面層(氧化膜/基材)組成分,電子顯微鏡(SEM)觀察氧化膜表面型態,探討其結果與耐蝕能力之關係。
各材料皆會加工成試棒以進行旋轉梁疲勞試驗,並記錄其疲勞曲線。陽極後的材料會分成內外兩部分進行氫含量測試。最後,利用材料中之氫含量分布及材料表面之陽極氧化膜探討對材料疲勞強度之影響。
實驗結果顯示,陽極氧化鋁孔洞大小、間距以及形態都影響著腐蝕性質。疲勞強度則與陽極氧化膜品質以及材料內部之氫含量有關。
摘要(英) In this study, Al7075 and Al7050 alloy samples were prepared for three Anodization treatment(Anodization、Hard Anodization(low current density)、Hard Anodization(high current density) ) to obtain a fixed anodic aluminum oxide (AAO) film thickness(10um).
The anodized and sealed samples were observed and analyzed by X-ray Photoelectron(XPS) , Scanning electron microscope(SEM),hydrogen concentration detector and potentiodynamic test.The samples were also carrying out rotating bending fatigue test.
We found the factors influenced the corrosion resistance of two alloy samples included pore numbers and/or volume,constituted oxide phases and voids formed in the AAO film.And the anodized/sealed Al7050 alloy samples exhibited the greatest fatigue strength at 107 life cycles among all samples. Hydrogen content remained in the samples’ matrix mainly
關鍵字(中) ★ 7075-T6
★ 7050-T6
★ 陽極處理
★ 光電子能譜儀XPS
★ 陽極極化曲線
★ 旋轉梁疲勞試驗
關鍵字(英)
論文目次 摘要 ........................................................................................................................................ i
Abstract .............................................................................................................................. ii
圖目錄 ................................................................................................................................... v
表目錄 ................................................................................................................................ viii
第一章 前言 ......................................................................................................................... 1
第二章 文獻回顧 ................................................................................................................. 2
2-1 陽極處理 ................................................................................................................ 2
2-1-1 陽極膜種類 ................................................................................................. 2
2-1-2 傳統陽極膜生長機制 .................................................................................. 3
2-1-3 陽極膜生長階段電壓與時間曲線 ............................................................... 5
2-1-4 近期的陽極氧化膜生長機制....................................................................... 9
2-1-5 磷酸溶液的陽極處理 ................................................................................ 11
2-2 硬化陽極處理製程的介紹 ................................................................................... 14
2-2-1 硬化陽極處理與一般陽極處理比較 ......................................................... 14
2-2-2 兩階段硬化陽極 ........................................................................................ 15
2-3 合金元素對鋁合金陽極氧化膜之影響 ................................................................ 18
2-4 陽極膜封孔 .......................................................................................................... 23
2-4-1 熱水封孔 ................................................................................................... 23
2-4-2 鉻酸鹽封孔 ............................................................................................... 24
2-4-3 醋酸鎳封孔 ............................................................................................... 24
2-4-4 熱水封孔與含醋酸鎳成份溶液封孔差異 ................................................. 25
2-5 氯離子於陽極氧化材料中之腐蝕理論 ................................................................ 26
2-5-1 陽極氧化鋁合金之腐蝕情形..................................................................... 27
2-5-2 不同陽極氧化膜的耐腐蝕性質 ................................................................. 30
2-5-3 不同封孔處理對耐腐蝕性質的影響 ......................................................... 31
2-6 鋁合金之析出硬化 ............................................................................................... 33
2-6-1 7xxx系列鋁合金熱處理程序及析出強化機制 ....................................... 33
2-6-2 Al-Zn-Mg-(Cu)析出物種類 ..................................................................... 36
2-7 疲勞破壞的原理及影響 ....................................................................................... 37
2-7-1 疲勞破壞的過程 ........................................................................................ 38
2-7-2 疲勞裂紋初始機構 .................................................................................... 38
2-7-3 疲勞裂紋成長機構 .................................................................................... 39
2-7-4 疲勞最終破壞 ............................................................................................ 40
2-7-5 疲勞應力分析及旋轉樑試驗原理 ............................................................. 46
2-8 一般陽極處理與硬化陽極處理對疲勞強度之影響 ............................................. 48
2-9 氫含量對於材料的疲勞性質影響 ........................................................................ 50
iv
2-9-1 陽極處理時氫離子的行為 ........................................................................ 50
2-9-2 疲勞試驗時氫離子之行為及影響 ............................................................. 51
第三章 實驗方法與步驟 .................................................................................................... 54
3-1 實驗材料 .............................................................................................................. 54
3-2 實驗設備 .............................................................................................................. 54
3-3 實驗步驟 .............................................................................................................. 55
第四章 結果與討論 ............................................................................................................ 60
4-1 陽極行為與陽極氧化膜分析 ............................................................................... 61
4-1-1 陽極處理之電壓-時間圖 ........................................................................... 61
4-1-2 陽極氧化膜SEM觀察 .............................................................................. 64
4-1-3 XPS分析 .................................................................................................... 65
4-1-4 陽極氧化膜之動態極化曲線分析 ............................................................. 69
4-2 材料的疲勞性質分析 ........................................................................................... 73
4-2-1 陽極處理前後基地氫含量變化 ................................................................. 73
4-2-2 試棒經陽極處理後的疲勞性質 ................................................................. 74
4-2-3 疲勞試棒的破斷面觀察 ............................................................................ 76
第五章 結論 ..................................................................................................................... 77
參考文獻 ............................................................................................................................. 79
參考文獻 [1] H.Masuda , F. Hasegwa , S. Ono,“Self-Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution”,Journal of The Electrochemical Society, Vol.144, pp.L127-L130,1997
[2] G. E. Thompson,“Porous anodic alumina: fabrication, characterization and applications”,Thin Solid Films, Vol.297, pp.192-201,1997
[3] O. Jessensky , F. Muller , U. Gosele,“Self-organized formation of hexagonal pore arrays in anodic alumina”,Appiled Physics Letters, Vol.72, pp.1173-1175,1998
[4] T. S. Shih , P. S. Wei,“Monitoring the progressive development of an anodized film on aluminum”,Journal of the Electrochemical Society, Vol.154, pp.678-683,2007
[5] I. Farnan , R. Dupree , A. J. Forty , Y. S. Jeong , G. E. Thompson , G. C. Wood,“Structural information about amorphous anodic alumina from 27Al MAS NMR”,Philosophical Magazine Letters, Vol.59, pp.189-195,1989
[6] T. P. Hoar , J. Yahalom,“The initiation of pores in anodic oxide films formed on aluminum in acid solutions”,Journal of the Electrochemical Society, Vol.110, pp.614-621,1963
[7] G. D. Sulka , K. G. Parkoaa ,” Anodising potential influence on well-ordered nanostructures formed by anodisation of aluminium in sulphuric acid” , Thin Solid Films,Vol.515,pp.338-345,2006
[8] G. D. Sulka , K. G. Parkoaa ,” Temperature influence on well-ordered nanopore structures grown by anodization of aluminium in sulphuric acid” , Electrochimica Acta,Vol.52,pp.1880-1888,2007
[9] G. C. Wood , J. P. O’Sullivan,“The Anodizing of Aluminium in Sulphate Solutions”,Electrochimica Acta, Vol.15, pp.1865-1876,1970.

[10] Y. S. Kim , S. I. Pyun , S. M. Moon , J. D. Kim,“The effects of Applied Potential and pH on The Electrochemical Dissolution of Barrier Layer in Porous Anodic Oxide Film on Pure Aluminum”,Corrosion Science, Vol.38, pp.329-336,1996
[11] T. S. Shih , P. S. Wei , Y. S. Yung,“Optical properties of anodic aluminum oxide films on Al1050 alloys”,Surface & Coatings Technology, Vol.202, pp.3298-3305,2008
[12] Q. Huang, W-K Lye, M. L. Reed,” Mechanism of isolated pore formation in
anodic alumina”, Nanotechnology,Vol.18,pp.405302
[13] P. Skeldon, G. E. Thompson, S. J. Garcia-Vergara, L. Iglesias-Rubianes, C. E. Blanco-Pinzon,” A Tracer Study of Porous Anodic Alumina”, Electrochemical and Solid-State Letters,Vol.9,B47-B51,2006
[14] R. Q. Yang , L. F. Jiang, X. F. Zhu, Y, Song, D.L. Yu, A.J. Han,” Theoretical derivation of ionic current and electronic current and comparison between fitting curves and measured curves”,RSC Advances,Vol.2,pp.12474-12481,2012
[15] G. E. Thompson , G. C. Wood,” Porous anodic film formation on aluminium”,Nature,
Vol.290,pp.230-232,1981
[16] R. Zhang, K. M. Jiang, G. Q. Ding,”Surface morphology control on porous anodic alumina in phosphoric acid”,Thin Solid Flims,Vol.518,pp3797-3800,2010
[17] W. Lee , R. Ji , U. Gosele , K. Nielsch,“Fast fabrication of long-range ordered porous alumina membranes by hard anodization”, nature materials,Vol.5, pp.741-747,2006
[18] K. Nielsch , J. Choi , K. Schwirn , R. B. Wehrspohn , U. Gosele,“Self-ordering regimes of porous alumina: The 10% porosity rule”,Nano Letters,Vol.2, pp.677-680,2002
[19] S. Ono , M. Saito , M. Ishiguro , H. Asoh,“Controlling Factor of Self-Ordering of Anodic Porous Alumina”,Journal of The Electrochemical Society, Vol. 151, pp.473-478,2004


[20] Y Li , Z. Y. Ling , S. S. Chen , J. C. Wang,“Fabrication of novel porous anodic alumina membranes by two-step hard anodization”,Nanotechnology, Vol. 19,pp.225604-225609, 2008
[21] X. Zhou, G.E. Thompson, P. Skeldon, “Effect of grain orientation on the morphology, dielectric breakdown and optical behaviour of anodic film formed on Al–2wt%Cu binary alloy” Electrochimica Acta , Vol.53 , pp.5684–5691 , 2008
[22] Tsangaraki-Kaplanoglou, S. Theohari, Th. Dimogerontakis, Y. M. Wang, H. H. Kuo, S. Kia, “Effect of alloy types on the anodizing process of aluminum”,Surface and Coatings Technology, Vol.200, pp.2634 , 2006
[23] K. Mukhopadhyay, “On the Nature of the Fe-Bearing Particles Influencing Hard Anodizing Behavior of AA 7075 Extrusion Products”,Metallurgical and Materials Transactions A, Vol.29 , pp.978 , 1998
[24] K. Mukhopadhyay, “Influence of Fe-bearing particles and nature of electrolyte on the hard anodizing behaviour of AA 7075 extrusion products”,A. K. Sharma, Surface and Coatings Technology, Vol.92, pp.212 , 1997
[25] M. Shahzad, M. Chaussumier, R. Chieragatti, C. Mabru, F. Rezai-Aria, “Influence of surface treatments on fatigue life of Al 7010 alloy”,Materials and Design, Vol.32 , pp.3328 , 2011
[26] L. E. Fratila-Apachitei, F. D. Tichelaar, G. E. Thompson, H. Terryn, P. Skeldon, J. Duszczyk, L. Katgerman,” A transmission electron microscopy study of hard anodic oxide layers on AlSi(Cu) alloys” ,Electrochemica. Acta , Vol.49, pp.3169 , 2004
[27] S.Wernick , R. Pinner , P. G. Sheasby, “The surface treatment and finishing of aluminum and its alloys”,Finishing Publication Ltd. ,England, 1987
[28] Y. Zuo , P. H. Zhao , J. M. Zhao,“The influences of sealing methods on corrosion behavior of anodized aluminum alloys in NaCl solutions”,Surface and Coatings Technology ,Vol. 166 , pp.237–242,2003
[29] V. Lopez , M. J. Bartolome , E. Escudero , E. Otero , J. A. Gonzalez,“Comparison by SEM, TEM, and EIS of hydrothermally sealed and cold sealed aluminum anodic oxides”,Journal of the Electrochemical Society, Vol 153, pp.75-82,2006
[30] 劉志維,「鋁鎂合金陽極處理技術之研發」,國立中央大學,碩士,民國91年
[31] O. J. Murphy , J. S. Wainright , J. J. Lenczewski , J. H. Gibson , M. W. Santana,“Spectroscopic Investigations of Porous and Sealed Anodic Alumina Films”,Journal of the Electrochemical Society Vol 136 , pp.3518-3525,1989
[32] A. Dito, F. Tegiacchi,”Cold sealing of anodized aluminium with nickel salt solutions”, Plating and surface finishing,Vol.72,pp.72-78,1985
[33] T. Ishikuro, S. Matsuoka,” Structure change and deveropment of alkali resistance of aluminum anodic oxide film by hydrothermal treatment”,Society of Materials Science, Vol.53,pp.1234-1239, 2004
[34] T. Tsujita, H. Sato, S. Tsukahara, Y. Ishikawa,” A Study on Sealing Process of Anodized Al Alloy Film”, Journal of the Vacuum Society of Japan, Vol.48, (2006),pp.217-219
[35] V. Lopez, M. J. Bartolome, E. Escudero, E. Otero, J. A. Gonzalez,” Comparison by SEM, TEM, and EIS of Hydrothermally Sealed and Cold Sealed Aluminum Anodic Oxides”, Journal of The Electrochemical Society,Vol.153,B75-B82,2006
[36] F. Snogan, C. Blanc, G. Mankowski, N. Pebere,” Characterisation of sealed anodic films on 7050 T74 and 2214 T6 aluminium alloys”,Surface and Coatings Technology, Vol.154,pp.94-103,2002
[37] J. J. Ren , Y. Zuo,“The growth mechanism of pits in NaCl solution under anodic films on aluminum”,Surface and Coatings Technology, Vol 191, pp.311-316,2005
[38] V. Moutarlier , M. P. Gigandet , J. Pagetti,“Characterisation of pitting corrosion in sealed anodic films formed in sulphuric,sulphuric/molybdate and chromic media”,Applied Surface Science ,Vol 206, pp.237-249,2003

[39] N. Voevodin , C. Jeffcoate , L. Simon , M. Khobaib , M. Donley,“Characterization of pitting corrosion in bare and sol–gel coated aluminum 2024-T3 alloy”,Surface and Coatings Technology, Vol 140, pp.29-34,2001
[40] K. Genel, ”Environmental effect on the fatigue performance of bare and oxide coated 7075-T6 alloy”, Engineering Failure Analysis, Vol.32,pp.248–260,2013
[41] J. J. Ren , Y. Zuo,“The growth mechanism of pits in NaCl solution under anodic films on aluminum”,Surface and Coatings Technology, Vol 191, pp.311-316,2005
[42] 柯賢文,腐蝕及其防治,全華科技圖書出版社,民國87年
[43] M. G. Fontana,Corrosion engineering,3rd edition,McGraw-Hill,New York,pp.53-67,1986
[44] V. Moutarlier , M. P. Gigandet , J. Pagetti,“Characterisation of pitting corrosion in sealed anodic films formed in sulphuric,sulphuric/molybdate and chromic media”,Applied Surface Science ,Vol 206, pp.237-249,2003
[45] S. I. Pyun, W. J. Lee,” The effect of prior Cl- ion incorporation into native oxide film on pure aluminium in neutral chloride solution on pit initiation”, Corrosion Science,
Vol.43,pp.353-361,2001
[46] J. Wloka, G. Burklin, S. Virtanen,” Influence of second phase particles on initial electrochemical properties of AA7010-T76”, Electrochimica Acta,Vol.53,
pp.2055-2059,2007
[47] N. Birbilis, M. K. Cavanaugh, R. G. Buchheit,” Electrochemical behavior and localized corrosion associated with Al7Cu2Fe particles in aluminum alloy 7075-T651”, Corrosion Science,Vol.48,pp4202-4215,2006
[48] F. Andreatta, M. M. Lohrengel, H. Terryn, J. H. W. de Wit,” Electrochemical characterisation of aluminium AA7075-T6 and solution heat treated AA7075 using a micro-capillary cell”,Electrochimica Acta,Vol.48,pp.3239-3247,2003


[49] X. Li, X. Nie, L. Wang, D.O. Northwood, ”Corrosion protection properties of anodic oxide coatings on an Al–Si alloy”, Surface & Coatings Technology, Vol200,
pp.1994–2000,2005
[50] Y. H. Zhaoa﹐X. Z. Liao a﹐Z. Jin b﹐R. Z. Valiev c﹐Y. T. Zhu a,“Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing” , Acta Materialia, Vol52﹐pp.4589-4599﹐2004
[51] S. K. Panigrahi﹐R. Jayaganthan,”Development of ultrafine grained high strength age hardenable Al 7075 alloy by cryorolling”, Materials and Design, Vol.32, pp.3150-3160, 2011
[52] F. Viana, A. M. P. Pinto, H. M. C. Santos, A. B. Lopes,”Retrogression and re-ageing of 7075 aluminium alloy: microstructural characterization”, Journal of Materials Processing Technology, Vol.92-93, pp.54-59, 1999
[53] J. J. Thompsom, E. S. Tankins, V. S. Agarwala,”A heat treatment for reducing corrosion and stress corrosion cracking susceptibilities in 7xxx aluminum alloy”,Materials Performance, Vol.26, pp.45-52, 1987
[54] J. R. Davis, ASM Specialty Handbook:Aluminum and Aluminum Alloys,ASM International, 1993
[55] D. Wang, D. R. Ni, Z. Y. Ma,“Effect of pre-Strain and two-step aging on microstructure and stress corrosion cracking of 7050 alloy”,Materials Science and Engineering A, Vol.494, pp.360-366, 2008
[56] P. N. Adler, R. Delasi, G. Geschwind,“Influence of Microstructure on the Mechanical Properties and Stress Corrosion Susceptibility of 7050 Aluminum Alloy”, Metallurgical and Materials Transactions B, Vol.3, pp.3191-3200, 1972
[57] A. Abolhasani, A. Zarei-Hanzaki, H. R. Abedi, M. R. Rokni, “The room temperature mechanical properties of hot rolled 7075 aluminum alloy”, Materials and Design, Vol.34, pp.631-636, 2012
[58] D. K. Xu,” Effect of S-Phase Dissolution on the Corrosion and Stress Corrosion Cracking of an As Rolled Al-Zn-Mg-Cu Alloy”, CORROSION,Vol.68,2012
[59] M. Saenz de Miera, M. Curioni, P. Skeldon, G. E. Thompson, “Modelling the anodizing behaviour of aluminium alloys in sulphuric acid through alloy analogues”, Corrosion Science, Vol.50, pp.3410-3415, 2008
[60] A. K. Mukhopadhyay, “On the Nature of the Fe-Bearing Particles Influencing Hard Anodizing Behavior of AA 7075 Extrusion Products”, Metallurgical and Materials Transactions A, Vol.29, pp.978-987, 1998
[61] M. Saenz de Miera, M. Curioni, P. Skeldon, G. E. Thompson, “Preferential anodic oxidation of second phase constituents during anodizing of AA2024-T3 and AA7075-T6 alloys”, Surface and Interface Analysis, Vol.42, pp.241-246, 2010
[62] J. Wloka, S. Virtanen, ”Detection of nanoscale η-MgZn2 phase dissolution from an Al-Zn-Mg-Cu alloy by electrochemical micro transients”, Surface and Interface Analysis, Vol.40,pp.1219-1225, 2008
[63] Y. H. Zhao, X. Z. Liao, S. Cheng, E. Ma, Yuntian, T. Zhu, ” Simultaneously Increasing the Ductility and strength of Nanostructures Alloys”, Advanced Materials, Vol.18, pp.2280-2283, 2006
[64] S. P. Knight, N. Birbilis, B. C. Muddle, A. R. Trueman , S. P. Lynch, “Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al–Zn–Mg–Cu alloys”, Corrosion Science, Vol.52,pp.4073-4080, 2010
[65] F. Wang, B. Q. Xiong, Y. G. Zhang, Z. H. Zhang, Z. X. Wang, B. H. Zhu, H. Q. Liu,” Microstructure and mechanical properties of spray-deposited Al–Zn–Mg–Cu alloy”, Materials and Design, Vol.28, pp.1154-1158, 2007


[66] G. Sha, Y. B. Wang, X. Z. Liao, Z. C. Duan, S. P. Ringer, T. G. Langdon, “Microstructural evolution of Fe-rich particles in an Al–Zn–Mg–Cu alloy during equal-channel angular pressing”, Materials Science and Engineering A, Vol.527, pp.4742-4749, 2010
[67] W.Feng﹐X.Baiqing﹐Z.Yongan﹐L.Hongwei﹐Li.Zhihui﹐L.Qiang﹐”Microstructure and mechanical properties of spary-deposited Al-Zn-Mg-Cu alloy processed through hot rolling and heat treatment”, Materials Science and Engineering A, Vol.518, pp.144-149, 2009
[68] F. Y. Hung, J. D. Liao, T. S. Lui, L. H. Chen, “Electrical current induced mechanism in microstructure and nano-indention of AleZneMgeCu (AZMC) Al alloy thin film”, Current Applied Physics, vol.11, pp.1269-1273, 2011
[69] S. P. Knight, N. Birbilis, B. C. Muddle, A. R. Trueman, S. P. Lynch, “Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al–Zn–Mg–Cu alloys”, Corrosion Science, Vol.52,pp.4073-4080, 2010
[70] J. B. Jordon, M. F. Horstemeyer, K. Solanki, J. D. Bernard, J. T. Berry, T. N. Williams, “Damage characterization and modeling of a 7075-T651 aluminum plate”, Materials Science and Engineering A, Vol.527,pp.169-179, 2009
[71] “Fatigue and Fracture”, ASM Handbook, vol.19, 1996
[72] 陳永增,鄧惠源, “機械材料試驗”, 高立出版社, 台北, 民國86 年
[73] H. W. Hayden, W. G. Moffatt and J. Wulff, “The structure and properties of Materials”, Vol.3, John Wiley, United Kingdom, 1965
[74] C. R. Krenn, J. W. Morris Jr., “The compatibility of crack closure and Kmax dependent models of fatigue crack growth”, International Journal of Fatigue, Vol.21, pp. 147-155, 1999

[75] A. K. Vasudévan, P. E. Bretz,” Near-threshold fatigue crack growth behaviour of 7xxx and 2xxx alloys: A brief review”, Proceedings of the International symposium on fatigue crack growth threshold concepts, Philadelphia, 1983
[76] Robert E. Reed-Hill, “The Microscopic Aspects of Fatigue Failure”,Physical Metallurgy Principles 3th Edition, pp.755~760, 1994
[77] Robert E. Reed-Hill, “The Plastic Zone Size Ahead of A Crack”, Physical Metallurgy Principles 3th Edition, pp.792~795, 1994
[78] M. Klesnil, P. Lukas, “Kinetics of Crack Growth”, Fatigue of Metallic Materials, Second Revised Edition, pp.92~97, 1992
[79] C. Laird, “The influences of Metallurgical structure on the mechanisms of fatigue crack propagation, Fatigue crack propagation”, ASTM STP 415, Society for Testing and Materials, Philadelphia, PA, USA, 1967
[80] Robert E. Reed-Hill, “The Rotating-Beam Fatigue Test”, Physical Metallurgy Principles 3th Edition, pp.750~752, 1994
[81] E. Cirik, K. Genel,” Effect of anodic oxidation on fatigue performance of 7075-T6 alloy”, Surface & Coatings Technology,Vol.202,pp.5190-5201, 2008
[82] A. Camargo, H. Voorwald, ” Influence of anodization on the fatigue strength of 7050-T7451 aluminum alloy”, Fatigue and Fracture of Engineering Materials and Structures, Vol.30, pp.993-1007, 2007
[83] L. Iglesias-Rubianes , P. Skeldon, G.E. Thompson, U. Kreissig, D. Grambole, H. Habazaki, K. Shimizu .”Behaviour of hydrogen impurity in aluminium alloys during anodizing” , Thin Solid Films ,Vol.424 , pp . 201–207 , 2003
[84] Y. Murakami , S. Matsuoka. “Effect of hydrogen on fatigue crack growth of metals” , Engineering Fracture Mechanics ,Vol77, pp .1926–1940


[85] S. Feliu Jr, Ma. J. Bartolome, J. A. Gonzalez and S. Feliu ,“XPS Characterization of porous and sealed anodic films on aluminum alloys” ,Journal of The Electrochemical Society, Vol.154,pp.C241-C248,2007
[86] T. S. Shih , P. C. Chen , Y. S. Huang,“Effects of the hydrogen content on the development of anodic aluminum oxide film on pure aluminum”,Thin Solid Films, Vol 519, pp.7817-7825,2011
[87] S. Feliu Jr., J. A. Gonzalez, V. Lopez, M. J. Bartolome, E. Escudero, E. Otero, “Characterisation of porous and barrier layers of anodic oxides on different aluminium alloys”,Journal of Applied Electrochemistry, Vol.37, pp.1027-1037,2007
[88] K. Mansouri, K. Ibrik, N. Bensalah, A. Abdel-Wahab ,“Anodic dissolution of pure aluminum during electrocoagulation process:influence of supporting electrolyte, initial pH, and current density”,Industrial &Engineering Chemistry Research, Vol.50, pp.13362-13372, 2011
[89] J. D. Kim, Su-Il Pyun, R. A. Oriani , ” Effects of applied current density and potential step on the stress generation during anodic oxidation of tungsten in 0.1 M H2SO4 Solution ” , Electrochimica acta , Vol. 40, pp.1171-1176, 1995
指導教授 施登士 審核日期 2015-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明