所別:<u>太空科學研究所碩士班 不分組(一般生)</u> 科目:<u>電磁學 共 / 頁 第 / 頁</u> 太空科學研究所碩士班 不分組(在職生)

本科考試禁用計算器

*請在答案卷_(卡)_內作答

1. The given electric field \bar{E} in spherical coordinates (r, θ, ϕ) is given,

$$\vec{E}(\vec{r}) = \frac{k}{r^3} (2\cos\theta \hat{r} + \sin\theta \hat{\theta})$$

where k is a constant with the appropriate units and $\hat{r}, \hat{\theta}$ are unit vectors in spherical coordinates

- r, θ , respectively.
- (a) Sketch the electric field lines in y-z plane. (5%)
- (b) Find the corresponding electrostatic potential field. (5%)
- (c) Sketch the equipotential lines in x-z plane. (5%)
- (d) Find the charge distribution for the electrostatic field. (5%)
- 2. A conducting sphere of radius R_1 with charge (q) is surrounded a thick concentric conducting shell of inner radius $R_2(>R_1)$ and outer radius $R_3(>R_2)$. The shell carries net charge (-q).
 - (a) Find the surface charge density at R_1 , R_2 , R_3 . (5%)
 - (b) Find the electric energy density. (5%)
 - (c) Find the potential at the center of the sphere. (5%)
 - (d) Find the capacitance of the system. (5%)
- 3. There are infinite uniform surface currents, current density (\vec{K}) in z-direction flowing over the x = 0 plane, surface current density $(-\vec{K}/2)$ flowing over the x = d(d > 0) plane, and surface current density $(-\vec{K}/2)$ flowing over the x = -d plane.
 - (a) Find the magnetic field at x > d. (5%)
 - (b) Find the magnetic field at d > x > 0. (5%)
 - (c) Find the magnetic field at 0 > x > -d. (5%)
 - (d) Find the magnetic field at x < -d. (5%)
- 4. A conducting sphere of radius R with charge Q is spinning with constant angular velocity $\vec{\omega}$ along the y-axis.
 - (a) Find the current distribution. (5%)
 - (b) Find the magnetic dipole moment of the sphere? (5%)
 - (c) Find the magnetic field distribution. (5%)
 - (d) Find the electromagnetic energy density. (5%)
- 5. An alternating current $I(t) = I_0 \sin(\omega t)$ flows down a long straight thin wire and returns along a coaxial conducting tube of radius R. Assuming that the magnetic field goes to zero outside the tube.
 - (a) Find the magnetic field under the quasi-static approximation. (5%)
 - (b) Find the induced electric field. (5%)
 - (c) Find the displacement current density. (5%)
 - (d) Find the energy flux density. (5%)

