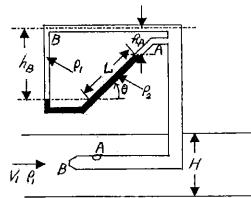
國立中央大學104學年度碩士班考試入學試題


所別:機械工程學系碩士班 丙組(熱流)(一般生) 科目:流體力學及熱傳學 共 _ 頁 第 / 頁 本科考試可使用計算器,廠牌、功能不拘 *請在答案卷(卡)內作答

流體力學 (50分)

1. What is the total (substantial or material) derivative $D\vec{v}/Dt$ of a steady-state velocity field represented by the following velocity vector? (5%)

$$\vec{v}(x,y,z) = -2x\vec{i} + -2y\vec{j} + 6z\vec{k}$$

- 2. A pitot tube is installed inside a square channel to measure the incompressible flow, and it is attached with an inclined-tube manometer. The corresponding values for the pitot tube and channel are given as: $\rho_1 = 1.2 \text{ kg/m}^3$, $\rho_2 = 1,000 \text{ kg/m}^3$, $h_A = 10 \text{ cm}$, $h_B = 40 \text{ cm}$, L = 50 cm, H = 50 cm, $g = 9.8 \text{ m/s}^2$. (20%)
- (a) What do you name the pressure at point A (p_A) and point B (p_B) of the pitot tube? (2%)
- (b) Derive the pressure difference $(p_A p_B)$ in terms of ρ_1 , ρ_2 , h_A , h_B , L, g. (6%)
- (c) Compute the speed of the channel (V_1) . (4%)
- (d) Compute the volume flow rate of the channel. (3%)
- (e) Write out the complete relation between speed and the pressure for this channel flow? Briefly explain this equation and what terms have you neglected in this equation? (5%)

(7%)

- 3. Please answer the following questions.
- (a) The Navier-Stokes equations (in x-direction) is:

$$\rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right) = -\frac{\partial p}{\partial x} + \rho g_x + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)$$

Please explain physical meaning of each term.

- (b) If a smooth tube is 0.1 mm diameter delivering 0.1mm/s water. Please provide the simplified the N-S equation and explain the simplified reason. (8%)
- 4. An incompressible fluid oscillates harmonically $(V=V_0\sin\omega t, \text{ where } V \text{ is velocity and } \omega \text{ is the frequency})$ with frequency of 10 rad/s in a 10 cm diameter pipe. A 1/4 model is used to determine the pressure drop per unit length, ΔP_l . The similarity model determine by

$$\frac{\mathrm{D}\Delta P_l}{\rho V_0^2} = \emptyset\left(\frac{V_0 t}{D}, \omega t, \frac{\rho V_0 D}{\mu}\right)$$

Where D is pipe diameter, μ is viscosity and ρ is density Please determine the frequency should model operate. (10%)

國立中央大學104學年度碩士班考試入學試題

所別:機械工程學系碩士班 丙組(熱流)(一般生) 科目:流體力學及熱傳學 共 2 頁 第 2 頁 本科考試可使用計算器,廠牌、功能不拘 *請在答案卷(卡)內作答

熱傳學 (50分)

- 1. A plane wall has the variable thermal conductivity that depends on temperature, and can be expressed as $k(T) = k_1 + \alpha(T - T_1)$. The surfaces of the wall are maintained at temperature T_1 at x= 0, T_2 at x = L, and $T_2 > T_1$. Explain and plot the steady-state temperature profile T(x) across the wall for (a) $\alpha > 0$, (b) $\alpha = 0$, and (c) $\alpha < 0$. (6%)
- 2. A truncated cone of axial length L has the variable cross-sectional area. The bottom surface is maintained at temperature $T_{\rm b}$, the top surface is well insulated, and the other surface is cooled by thermal radiation to the surroundings of temperature T_{∞} . (7%)
 - (a) Obtain the steady-state equation for the temperature of the cone. Assume temperature is uniform over any cross sections of the cone.
 - (b) Write down the boundary conditions for the equation.
- 3. A hot potato is put into a pot of cold water. Assume the heat exchange is only between the potato and water, and the potato and water have uniform temperatures.
 - (a) Derive the equations that describe the time-dependent temperature change for the potato and the water, respectively.
 - (b) Explain if the internal energy change of the potato will be equal to that of the water?
 - (c) Explain if the temperature change of the potato will be equal to that of the water?
 - (d) Will the temperature change of the potato in the first minute be larger, smaller or equal to that in the second minute? Why?
 - (e) Explain under what condition the uniform temperature assumption for the potato is acceptable?
- 4. The friction coefficient of a certain fluid inside a special tube has been tested as $c_f = 0.032 Re^{-0.1}$. If the Reynolds analogy can be applied for this condition, what is the Nusselt number for this flow at Reynolds number equals to 40,000?
- 5. Please define and explain the fully developed conditions for velocity and temperature. (7%)
- 6. What are the values of a, b c and d for flow over a flat plate? Where δ , x, c_{fx} and h_x are the boundary layer thickness, flow distance, local friction coefficient and local heat transfer coefficient respectively.