博碩士論文 976403001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.117.183.229
姓名 吳剛宏(Kang-Hung Wu)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 改進GPS電波掩星法反演電離層E層電子濃度之誤差:COSMIC觀測與IRI模型模擬
(Improvement of GPS Radio Occultation Retrieval Error of E Region Electron Density: COSMIC Measurement and IRI Model Simulation)
相關論文
★ 利用中壢特高頻雷達研究對流降水系統雨滴粒徑與速度之關係★ 利用中壢特高頻雷達對流星現象進行觀測與應用
★ 台灣北部地區大氣折射率之分析與應用★ 中華衛星一號Ka波段標識訊號大氣衰減之量測研究
★ 利用華衛一號通訊實驗酬載Ka波段標識訊號對閃爍效應之研究★ 利用中立VHF雷達對大氣及降水回波特性之研究
★ 台灣地區Ka波段大氣傳播通道之研究★ 低軌道Ka波段人造衛星標識訊號特性之研究
★ 電離層散塊E層型態二不規則體之研究★ 中華衛星一號Ka波段傳播實驗診斷分析
★ 中華衛星一號低軌道衛星 Ka 波段雨衰減實驗與模型建立★ 特高頻雷達對空中降水粒子大小與回波功 率關係之研究
★ 低軌道衛星Ka波段閃爍現象之研究★ Ka波段雨衰減之分析與研究
★ 電離層E層場列不規則體移行速度之估算研究★ 臺灣地區蒸發導管之特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主旨在於改進電離層電波掩星法反演電離層E層,在進行誤差校正前,必須先了解福爾摩沙三號衛星觀測資料的特性,文中利用2006年7月到2011年12月觀測到的電子濃度進行電離層E層的研究與探討。在進行資料分析前,需進行資料品質的控管,品質控管利用ionPrf電子濃度剖面的擾動量、F層電子濃度420到490公里的斜率、NOAA所提供的地磁擾動指數以及ionphs電離層散塊E層進行資料的篩選。從福爾摩沙三號衛星觀測電離層E層資料全球分佈以及日變化可以得知在日間電離層E層在地磁緯度區間南北緯30到50度以及磁赤道地區有明顯電子濃度異常的現象,在地磁緯度區間南北緯10度到30度則有電子濃度谷值,在磁緯度70度附近觀測到極光橢圓區。
使用國際參考電離層模型去模擬電離層80到2000公里的時空分佈,進而利用真實福爾摩沙三號衛星軌道去反演電子濃度剖面,並將模擬反演電子濃度剖面和國際參考電離層模型電子濃度比較,可以得知電波掩星法的反演誤差量。模擬結果顯示日間電波演星法反演電離層電子濃度從底層到高層皆在地磁緯度30到50度呈現高估,在地磁緯度10到30度則為低估,和實際福爾摩沙三號衛星觀測電子濃度資料一致。主要造成誤差的原因為電離層電子濃度不符合球對稱的假設,模擬結果顯示平均在日夜間電離層F層的誤差在35%以內,日間電離層E層誤差在200%以內,隨緯度而有不同的變化,夜間電離層E層則大於200%。除了檢視電子濃度的誤差量,文中也檢視了垂直電子含量的誤差,整體而言,垂直電子濃度含量在30%以內。
經過模擬和觀測資料相互比較後發現在不同地磁緯度以及當地時間變化上有強度上的差異,整體而言模擬反演E層電子濃度剖面符合COSMIC觀測到的E層電子濃度。根據全球電離層探測儀網、COSMIC觀測資料、IRI模型電子濃度和電波掩星法反演電子濃度,本文檢視並模擬2006年7月到2011年12月的資料。COSMIC量測以及IRI模型模擬電波掩星法都顯示百分比誤差(PE)和方均根誤差(RMSE)在地磁緯度和當地時間有很大的關係性,最小值發生在早上和高緯度地區,最大值發生在下午和中緯度地區。除此之外,PE和RMSE的季節變化似乎和緯度有關。在COSMIC觀測到的NmE移除IRI模型模擬電波掩星法造成的誤差後,統計結果也顯示校正後的資料,隨著不同月份COSMIC NmE仍然存在了-20%到38%的誤差量,大於IRI預測NmE的PE誤差量,範圍介於-6.5%到20%;校正後的RMSE範圍介於3.4*10^4到6*10^4 #/cm3,IRI模型的RMSE值介於1.2*10^4到2.3*10^4 #/cm3。
摘要(英) The aim of this paper is the improvement of GPS Radio Occultation Retrieval Error of E Region Electron Density. Before the error correction was made, it was necessary to understand the feature of FORMOSAT3/COSMIC electron density profiles. On the basis of 66 month data (July 2006- December 2011), the investigation and analysis of the ionospheric E region electron density were made. In order to screen the data in harmony with the physical principle, the quality control algorithm was developed, including mean deviations, F region slope in a range of 420 and 490 km, Kp index provided by NOAA, and the fluctuations of signal-to-noise (SNR) ratio and excess phase. The global distribution and diurnal variations of COSMIC observation in E region show that there are three anomalous daytime enhancements in the magnetic latitude region ±30°–50° and magnetic equator, electron density depletion in the magnetic latitude region ±10°–30°, aural oval situated around 70° magnetic latitude.
The International Reference Ionosphere (IRI) model was selected to simulate temporal and spatial distributions of global electron densities from 80 to 2000 km in 2008. The COSMIC geometry were utilized to retrieve the electron density in each occultation events. The retrieval error were computed by comparing the retrieved electron density with IRI electron density in E and F region. The major cause of the retrieval error is ionospheric electron density which violate assumption of spherical symmetry. The result show that the simulation-retrieved electron densities seem to be significantly overestimated in the magnetic latitude regions ±30°–50° and magnetic equator, and underestimated in the magnetic latitude regions ±10°–30°, which is consistent with COSMIC observation. The retrieval error were ±35 % in the daytime and nighttime F region, ±200% in the daytime E region depended on the different latitudinal region, and greater than 200% in the nighttime E region. Besides the retrieval error of the electron density, the retrieval error of the vertical TEC was also examined. Overall, the retrieval error of the vertical TEC were ±30 %.
Despite regional discrepancies in the magnitudes of the E region electron density, the IRI model simulations can, on the whole, describe the COSMIC measurements in quality and quantity. On the basis of global ionosonde network and the IRI model, the retrieval errors of the global COSMIC-measured E region peak electron density (NmE) from July 2006 to July 2011 are examined and simulated. The COSMIC measurement and the IRI model simulation both reveal that the magnitudes of the percentage error (PE) and root mean square error (RMSE) of the relative RO retrieval errors of the NmE values are dependent on local time (LT) and geomagnetic latitude, with minimum in the early morning and at high latitudes and maximum in the afternoon and at middle latitudes. In addition, the seasonal variation of PE and RMSE values seem to be latitude dependent. After removing the IRI model-simulated GPS RO retrieval errors from the original COSMIC measurements, statistics show that the monthly residual errors remained in the corrected COSMIC-measured NmE vary in a range of -20% - 38%, which are comparable to or larger than the percentage errors of the IRI-predicted NmE fluctuating in a range of -6.5% - 20%. The RMSE after correcting are in a range of 3.4*10^4 - 6*10^4 #/cm3, which are greater than the RMSE of the IRI-predicted NmE fluctuating in a range of 1.2*10^4 - 2.3*10^4 #/cm3.
關鍵字(中) ★ 電波掩星法
★ 電離層
★ 電離層探測儀
★ 福爾摩沙衛星三號
★ 國際參考電離層模型
關鍵字(英) ★ radio occultation
★ ionosphere
★ Ionosonde
★ FORMOSAT3/COSMIC
★ IRI
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vii
圖目錄 xi
表目錄 xv
第一章 前言 1
第二章 理論基礎 8
2-1 電離層簡介 8
2-2 理論方程式 12
2-2-1 查普曼理論(Chapman Theory) 12
2-2-2 查普曼層應用 16
2-2-3 電漿擴散和運動 20
2-3 電離層分層 25
2-3-1 電離層D層 25
2-3-2 電離層E層 26
2-3-3 電離層F層 29
2-3-4 散塊E層(Sporadic E layer) 31
2-4 觀測系統簡介 34
2-4-1 全球定位系統(Global Positioning System) 34
2-4-2 福爾摩沙衛星三號系統 36
2-4-3 電離層探測儀(Ionosonde) 38
2-4-4 國際電離層參考模式(IRI model) 42
第三章 電波掩星法 47
3-1 光學路徑和Bouguer’s Law 48
3-2 偏折角 (Bending angle) 52
3-3 Abel transform 56
3-4 利用折射指數反演電子濃度 58
3-5 利用全電子含量反演電子濃度 59
第四章 掩星資料擷取與分析方法 62
4-1 品質控管 63
4-1-1 品質控管 64
4-1-2 地磁指數(Kp index) 67
4-1-3 散塊E層篩選 67
4-2 掩星資料篩選流程 70
4-3 電波掩星法數值運算 73
第五章 福衛三號觀測資料分析 78
5-1 全球電離層E層型態 78
5-2 電離層E層日變化 83
5-3 與電離層觀測儀之比較 87
5-4 討論與結論 94
第六章 電波掩星法反演誤差探討 102
6-1 IRI參數設定 102
6-2 電波掩星法電離層E層與F層 106
6-3 電波掩星法垂直TEC誤差量 116
6-4 討論與結論 126
第七章 改進COSMIC電離層E層電子濃度 132
7-1 電波掩星法觀測與模擬之比較 132
7-2 COSMIC電離層E層之誤差移除 140
7-2-1 誤差移除之方法 140
7-2-2 誤差校正:年變化與月份變化 141
7-2-3 誤差校正:季節以及當地時間之變化 144
7-3 討論與結論 146
第八章 總結與未來展望 154
8-1 總結 154
8-2 未來展望 156
參考文獻 159
附錄A 167
參考文獻 Allen, C. W., The interpretation of the XUV solar spectrum, Space Sci. Rev., 4, 91–122, 1965.
Arras, C., J. Wickert, G. Beyerle, S. Heise, T. Schmid, and C. Jacobi, A global climatology of ionospheric irregularities derived from GPS radio occultation, Geophys. Res. Lett., 35, L14809, doi:10.1029/2008GL034158, 2008.
Appleton, E. V., A seasonal anomaly in the ionospheric E-layer, J. Atmos. Terr. Phys., 25, 577–579, doi:10.1016/0021-9169(63)90178-8, 1963.
Appleton, E. V., Two Anomalies in the Ionosphere, Nature, 157, pp. 691, 1946
Appleton, E. V., and A. J. Lyon, Studies of the E-layer of the ionosphere—II. Electromagnetic perturbations and other anomalies, J. Atmos. Terr. Phys., 21, 73–99, doi:10.1016/0021-9169(61)90103-9, 1961
Bamford, R. A., R. Stamper, and L. R. Cander, A comparison between the hourly autoscaled and manually scaled characteristics from the Chilton ionosonde from 1996 to 2004, Radio Sci., 43, RS1001, doi:10.1029/2005RS003401, 2008.
Born, M., and E. Wolf, Principles of Optics(7th), Cambridge university, New York, 1999
Chapman, S., The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth, Proc. Phys. Soc., London, Vol. 43, pp. 26-45, 1931a.
Chapman, S., The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth II. Grazing incidence, Proc. Phys. Soc. (London), Vol. 43, pp. 483-501, 1931b.
Cherniak, I.V., I.E. Zakharenkova, A. Krankowski, I.I. Shagimuratov, Plasmaspheric electron content derived from GPS TEC and FORMOSAT-3/COSMIC measurements: Solar minimum condition, J. Adv. Space Res., 2012.
Chu, Yen-Hsyang, Kong-Hong Wu, and Ching-Lun Su, A New Aspect of Ionospheric E region Electron Density Morphology, J. Geophys. Res., VOL. 114, A12314, doi:10.1029/2008JA014022, 2009.
Chu, Y.H., Kong-Hong Wu, and Ching-Lun Su, Reply to comment by Jiuhou Lei et al. on “A new aspect of ionospheric E region electron density morphology” , J. Geophys. Res., 115, A07314, doi:10.1029/2010JA015334, 2010.
Chu, Y. H., C. L. Su, H. T. Ko, A global survey of COSMIC ionospheric peak electron density and its height: A comparison with ground-based ionosonde measurements, Adv. Space Res., 46, 431–439, 2010.
Chu, Y.H., C.Y. Wang, K.H. Wu, K.T. Chen, K.J. Tzeng, C.L. Su, W. Feng and J.M.C. Plane, Morphology of Sporadic E Layer Retrieved from COSMIC GPS Radio Occultation Measurements: Wind Shear Theory Examination, J. Geophys. Res., 119, 2117–2136, doi:10.1002/2013JA019437, 2014.
Davies, K., Ionospheric Radio, Peter peregrinus Ltd., London, 1989
Dungey, J. W., The influence of the geomagnetic field as turbulence in the ionosphere, J. Atmos. Terr. Phys., Vol. 8, pp. 39-42, 1956.
Fjeldbo, G., A. J. Kliore, and V. R. Eshelman, The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiment. Astron. J., 76, 123-140,
doi:10.1086/111096, 1971.
Fox, Matthew W. and Craig Blundell, Automatic scaling of digital ionograms, Radio Sci., 24, 747-761, 1989.
Garcia-Fernandez, M., M. Hernandez-Pajares, M. Juan, and J. Sanz, Improvement of ionospheric electron density estimation with GPSMET occultations using Abel inversion and VTEC information, J. Geophys. Res., 108(A9), 1338, doi:10.1029/2003JA009952, 2003.
Gilbert, J. D., and R. W. Smith, A comparison between the automatic ionogram scaling system ARTIST and the standard manual method, Radio Sci., 23, 968-974, 1988.
Goldberg, R. A., A review of the theories concerning the equatorial F2 region ionosphere, Proc. IEEE, 57, NO.6, 1119-1126, 1969.
Hajj, G. A., R. Ibanez-Meier, E. R. Kursinski, and L. J. Romans, Imaging the ionosphere with the Global Positioning System, Int. J. Imaging Syst. Technol.,5, 174–184, 1994.
Hajj, G. A. and L. J. Romans, Ionospheric electron density profiles obtained with GPS: Results from the GPS/MET experiment, Radio Sci., 33(1), 175-190, 1998.
Hajj, G. A., L. C. Lee, X. Pi, L. J. Romans, W. S. Schreiner, P. R. Straus, and C.Wang, COSMIC GPS ionospheric sensing and space weather, Terr. Atmos. Ocean. Sci., 11, 235–272, 2000.
Haldoupis, C., “A Tutorial Review on Sporadic E Layers”, Aeronomy of the Earth’s Atmosphere and Ionosphere IAGA Special Sopron Book Series, Vol.2, pp.381-391 ,Springer Netherlands, 2011.
Hernandez-Pajares, M., J. M. Juan, and J. Sanz, Improving the Abel inversion by adding ground GPS data to LEO radio occultations in ionospheric sounding, Geophys. Res. Lett., 27, 2473–2476, 2000.
Hu, L., B. Ning, L. Liu, B. Zhao, G. Li, B. Wu, Z. Huang, X. Hao, S. Chang, and Z. Wu, Validation of COSMIC ionospheric peak parameters by the measurements of an ionosonde chain in China, Ann. Geophys., 32, 1311–1319, doi:10.5194/angeo-32-1311-2014, 2014.
Hocke, K, and K. Igarashi, Electron density in the F region derived from GPS/MET radio occultation data and comparison with IRI, Earth Planets Space, 54, 947–954, 2002.
Høeg, P., G. B. Larsen, H.-H. Benzon, J. Grove-Rasmussen, S. Syndergaard, M. D. Mortensen, J. Christensen, and K. Schultz, GPS atmosphere profiling methods and error assessments, Scientific Report 98-7, Danish Meteorological Institute, Copenhagen, Denmark, 1998.
Kelly, M. C., The Earth’s ionosphere, Academic Press, 1989
Kelley, M. C., Wong, V. K., Aponte, N., Coker, C., Mannucci, A. J., and Komjathy, A.: Comparison of COSMIC occultation-based electron density profiles and TIP observations with Arecibo incoherent scatter radar data, Radio Sci., 44, RS4011, doi:10.1029/2008RS004087, 2009.
Kouris, S. S., and L. M. Muooleton, Diurnal variation in E-layer ionization, J. Atmos. Terr. Phys., 35, 133–139, doi:10.1016/0021-9169(73)90221-3, 1973.
Kursinski, E. R., G. A. Hajj, S. S. Leroy, and B. Herman, The GPS radio occultation technique. Terr. Atmos. Ocean. Sci., 11, 53-114, 2000.
Lei, J., et al., Comparison of COSMIC ionospheric measurements with ground‐based observations and model predictions: Preliminary results, J. Geophys. Res., 112, A07308, doi:10.1029/2006JA012240, 2007.
Liu, H., H. Luhr, and S. Watanabe, Climatology of the equatorial thermospheric mass density anomaly, J. Geophys. Res., 112, A05305, doi:10.1029/2006JA012199, 2007.
Luhr, H., Rother, M., H ausler, K., Fejer, B., and Alken, P.: Direct comparison of non-migrating tidal signatures in the electrojet, vertical plasma drift and equatorial ionization anomaly, J. Atmos. Solar-Terr. Phys., 75–76, 31–43, doi:10.1016/j.jastp.2011.07.009, 2012.
Mathews, J. D., “Sporadic E: current views and recent progress”, J. Atmos. Terr. Phys., Vol.60, pp.413-435, 1988.
Nicolls, M. J., F. S. Rodrigues, G. S. Bust and J. L. Chau, Estimating E region density profiles from radio occultation measurements assisted by IDA4D, J. Geophys. Res., 114, A10316, doi:10.1029/2009JA014399, 2009.
Nicolls, M. J., F. S. Rodrigues, and G. S. Bust, Global observations of E region plasma density morphology and variability, J. Geophys. Res., 117, A01305, doi:10.1029/2011JA017069, 2012.
Mitra, S. K., Geomagnetic control of region F2 of the ionosphere, Nature, 158, 668–669, doi:10.1038/158668a0, 1946.
Moore, L., M. Mendillo, C. Martinis, and S. Bailey, Day-to-day variability of the E layer, J. Geophys. Res., 111, A06307, doi:10.1029/2005JA011448, 2006.
Perrone, L., A. V. Mikhailov, and L. P. Korsunova, FORMOSAT‐3/COSMIC E region observations and daytime foE at middle latitudes, J. Geophys. Res., 116, A06307, doi:10.1029/2010JA016411, 2011.
Reinisch, B. W., and X. Huang, Automatic calculation of electron density profiles from digital ionograms: 3. Processing of bottomside ionograms, Radio Sci., 18, 477–492, 1983.
Rishbeth, H, and O.K.Garriott, Introduction to ionospheric physics, 331pp, Academic, San Diego, California, 1969.
Rius, A., G. Ruffini, and A. Romeo, Analysis of Ionospheric Electron Density distribution from GPS/MET occultations, IEEE Transactions on Geoscience and Remote Sensing, vol 36, 383-394, 1998.
Rocken, C., et al., Analysis and validation of GPS/MET data in the neutral atmosphere, J. Geophys. Res., 102, 29,849–29,866, 1997.
Schreiner, W. S., Sokolovskiy, S. V., Rocken, C., and Hunt, D. C.: Analysis and validation of GPS/MET radio occultation data in the ionosphere, Radio Sci., 34(4), 949–966, 1999.
Stankov, Stanimir M., Jean-Claude Jodogne, Ivan Kutiev, Koen Stegen, René Warnant, Evaluation of automatic ionogram scaling for use in real-time ionospheric density profile specification: Dourbes DGS-256/ARTIST-4 performance, Annals of Geophysics, 55, 283-291, doi: 10.4401/ag-4976, 2012.
Stening, R.J., Modeling the low latitude F region, J. Atmos. Terr. Phys., 54, 1387-1412, 1992.
Tascione, F. T., Intronduction to the Space Environment, Krieger Publication Company, Malabar, Florida, 1994.
Titheridge, J. E., Modeling the peak of the ionospheric E-layer, J. Atmos. Sol. Terr. Phys., 62, 93–114, doi:10.1016/S1364-6826(99)00102-9, 2000.
Tricomi, F. G., Integral Equations, Dover, Mineola, N. Y., 1957.
Tsai, H. F., J. Y. Liu, W. H. Tsai, C. H. Liu, C. L. Tseng, and C. C. Wu, Seasonal variations of the ionospheric total electron content in Asian equatorial anomaly regions, J. Geophys. Res., 106, 30,363–30,369, doi:10.1029/2001JA001107, 2001.
Tsai, L.-C., W. H. Tsai, W. S. Schreiner, F. T. Berkey, and J. Y. Liu, Comparisons of GPS/MET retrieved ionospheric electron density and ground based ionosonde data, Earth Planets Space, 53, 193–205, 2001.
Tsai, L.-C., and W.-H. Tsai, Improvement of GPS/MET ionospheric profiling and validation using Chung-Li ionosonde measurements and the IRI model,Terr. Atmos. Oceanic Sci., 15, 589–607, 2004.
Whitehead, J. D., “Recent work on mid-latitude and equatorial sporadic E”, J. Atmos. Terr. Phys., Vol.51, pp.404-424, 1989.
Walker, G. O., and A. E. Strickland, A comparison of the ionospheric equatorial anomaly in the East Asian and American regions at sunspot minimum, J. Atmos. Terr. Phys., 43, 763–774, doi:10.1016/0021-9169(81)90052-0, 1981.
Wu, Dong L., Chi O. Ao, George A. Hajj, Manuel de la Torre Juarez, and Anthony J. Mannucci, Sporadic E morphology from GPS-CHAMP radio occultation, J. Geophys. Res., 110, A01306, doi:10.1029/2004JA010701, 2005.
Wu, X., X. Hu, X. Gong, X. Zhang, and X. Wang, An asymmetry correction method for ionospheric radio occultation, J. Geophys. Res., 114, A03304, doi:10.1029/2008JA013025, 2009.
Xiong, C., Luhr, H., and Ma, S. Y.: The magnitude and inter-hemispheric asymmetry of equatorial ionization anomaly-based on CHAMP and GRACE observations, J. Atmos. Solar-Terr. Phys., in review, 2013.
Yang, K. F., Y. H. Chu, C. L. Su, H. T. Ko, and C. Y. Wang, An examination of FORMOSAT- 3/COSMIC F peak measurements: Data Quality Criteria and Comparisons with the IRI model, Terr. Atmos. Ocean. Sci., Vol. 20, p.193-206, 2009.
Yeh, K. C., S. J. Franke, E. S. Andreeva, and V. E. Kunitsyn, An investigation of motions of the equatorial anomaly crest, Geophys. Res. Lett., 28(24),4517–4520, 2001.
Yeh, W.-H., C.-Y. Huang, T.-Y. Hsiao, T.-C. Chiu, C.-H. Lin, and Y.-A. Liou, Amplitude morphology of GPS radio occultation data for sporadic-E layers, J. Geophys. Res., 117, A11304, doi:10.1029/2012JA017875, 2012.
Yue, X., W. S. Schreiner, J. Lei, S. V. Sokolovskiy, C. Rocken, D. C. Hunt, Y.-H. Kuo, Error analysis of Abel retrieved electron density profiles from radio occultation measurements, Ann. Geophys., 28, 217–222, 2010.
Yue, X., W. S. Schreiner, Y. Lin, C. Rocken, Y. Kuo, and B. Zhao, Data assimilation retrieval of electron density profiles from radio occultation measurements, J. Geophys. Res., 116, A03317, doi:10.1029/2010JA015980, 2011.
科孝聰,福衛三號電離層資料品質控管,國立中央大學太空科學研究所,碩士論文,2007
吳剛宏,福衛三號電子濃度資料分析:電離層E層,國立中央大學太空科學研究所,碩士論文,2008
張榮華,GPS電波掩星法之研究,國立中央大學太空科學研究所,碩士論文,2009
黃建樺,福爾摩沙衛星三號電離層全電子含量誤差分析與比較,國立中央大學太空科學研究所,碩士論文,2011
國家太空中心 福爾摩沙衛星三號衛星特性 http://www.nspo.narl.org.tw/2011/tw/projects/FORMOSAT-3/satellite.html
國家太空中心 福爾摩沙衛星三號計畫簡介http://www.nspo.narl.org.tw/2011/tw/projects/FORMOSAT-3/program-description.html
Standard Archiving Output (SAO) Format-Scaled Ionospheric Characteristics http://ulcar.uml.edu/~iag/SAO-4.htm#TABLE6
Background to Ionospheric Sounding http://ulcar.uml.edu/digisonde_dps.html
International Reference Ionosphere http://iri.gsfc.nasa.gov/
指導教授 朱延祥(Yen-Hsyang Chu) 審核日期 2015-3-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明