博碩士論文 986403006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.146.35.203
姓名 謝文傑(WEN-CHIEH HSIEH)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 太空環境中的兩個觀測難題: 前艏震波區域波擾動斜向傳播現象與 接觸不連續面的存在證據
(Two Long-standing Problems in Observation: Oblique Propagation of Foreshock ULF Wave and Existence of Contact Discontinuity)
相關論文
★ 磁暴與磁副暴的關係:檢視跨磁尾電流對 SYM-H 的貢獻★ 磁尾的磁場延伸和偶極化現象與磁副暴發生位置的距離關係之探討
★ 二胞型極光與行星際磁場間的關係★ 磁層頂位置之不對稱性研究
★ 兩類快速電漿流事件與夜側極光活動關係之研究★ 太陽風對地球磁層頂內側磁場之影響
★ 磁層頂日下點對峙距離和行星際磁場錐角值關係的研究★ 運用西蜜斯衛星資料研究低頻帶升調合唱波的重複發生週期之分布
★ 徑向行星際磁場事件之特性及其對磁層之影響★ 太空天氣對Formosat-2及Formosat-3異常事件影響之分析
★ 多能量通道之極區沉降粒子研究★ 徑向行星際磁場下日側極光與電離層對流型態
★ 水星磁層對行星際磁場與太陽風動壓的反應★ 應用長短期記憶遞迴神經網路預測Kp地磁指數
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在太空觀測研究的歷程中,有兩個爭論超過20個年頭的議題:徑向行星際磁場環境下前艏震波區域的波擾動斜向傳播現象,與自然環境中接觸不連續面的存在證據。在本論文中,我們使用 THEMIS 衛星任務資料來檢驗太陽風參數和斜向傳播現象之間的關係;我們同時從波動折射機制的觀點出發,得出一斜向傳播角度和太陽風參數的關係方程式。觀測結果和理論方程式皆顯示斜向傳播角度與波擾動的頻率和極性、行星際磁場強度以及太陽風速率無直接關係;而與太陽風速率和上、下游波擾動相速率三者間的比值有關。在接觸不連續面存在證據的議題上,我們提出了一個根據磁流體躍遷條件使用單一衛星資料選取接觸不連續面事件的可行方案,我們呈現了兩個接觸不連續面事件,一個存在於太陽風中而另一個發現於地球磁層內。接觸不連續面的寬度估計為11.7和4.3個離子迴旋半徑。
摘要(英) Two problems in observations have lasted for more two decades: the oblique propagation of foreshock ultra-low frequency (ULF) wave and the existence of contact discontinuity (CD) in nature. Using the THEMIS data, we examine the relation between oblique propagation angles and solar wind parameters. Meanwhile, we derive the oblique propagation angle as a function of the solar wind parameters from the aspect of wave refraction. Both of the examinations from the observed relation and the prediction from the derived function reveal the irrelevance of oblique propagation angle to the wave frequency, the wave polarization, the strength of magnetic field and the solar wind speed. The oblique propagation angle is shown to be a function of a ratio between solar wind speed, the upstream and downstream wave phase speeds. As to the argument of existence of CD, we propose a practical process to find CDs with single-satellite data based on MHD jump conditions. Two CD events are presented, one in the solar wind and the other one in the magnetosphere. The width of the transition of a CD may range from 11.7 and 4.3 ion gyroradii.
關鍵字(中) ★ 前艏震波
★ 接觸不連續面
★ 超低頻波擾動
★ 磁流體力學
關鍵字(英) ★ Foreshock
★ Contact Dicontinuity
★ ULF wave
★ Magnetodynamics
論文目次 摘 要………………………………………………………………………………………………………………i
English Abstract……………………………………………………………………………………………………iii
Acknowledgments……………………………………………………………………………………………………………v
Table of Contents…………………………………………………………………………………………………vii
List of figures…………………………………………………………………………………………………………ix
List of tables…………………………………………………………………………………………………………xxi
Chapter 1 General Introduction………………………………………………………………1
1.1 Space Environment…………………………………………………………………………………………2
1.2 THEMIS mission…………………………………………………………………………………………………4
Chapter 2 Oblique Propagation of ULF Frequency Waves in Foreshock……………………………………………………………………………………………………………………………8
2.1 Background and literature review…………………………………………………8
2.2 Data processing……………………………………………………………………………………………22
2.3 Statistical results…………………………………………………………………………………30
2.4 Wave refraction……………………………………………………………………………………………36
2.5 Discussion…………………………………………………………………………………………………………50
2.6 Conclusion…………………………………………………………………………………………………………53
Chapter 3 Existence of Contact Discontinuity………………………55
3.1 Background and literature review………………………………………………55
3.2 Observational Criteria of a CD selection…………………………67
3.3 CD event selection from data…………………………………………………………72
3.4 Discussion…………………………………………………………………………………………………………79
3.5 Conclusion…………………………………………………………………………………………………………88
Chapter 4 Summary………………………………………………………………………………………………89
Bibliographies……………………………………………………………………………………………………………90
Appendix I List of Foreshock ULF Wave Events………………………100
參考文獻 [1] Angelopoulos, V. (2008), The THEMIS mission, Space Sci. Rev., 141(1–4), 5–34, doi:10.1007/s11214-008-9336-1.
[2] Auster, H. U., et al. (2008), The THEMIS fluxgate magnetometer, Space Sci. Rev., 141(1–4), 235–264, doi:10.1007/s11214-008-9365-9.
[3] Balogh, A., et al. (2005), Cluster at the bow shock: Introduction, Space Sci. Rev., 118, 155–160, doi:10.1007/s11214-005-3826-1
[4] Barnes, A. (1970), Theory of generation of bow-shock-associated hydromagnetic waves in the upstream interplanetary medium, Cosmic Electrodyn., 1, 90.
[5] Billingham, L., S. J. Schwartz, and D. G. Sibeck (2008), The statistics of foreshock cavities: Results of a Cluster survey, Ann. Geophys., 26, 3653–3667, doi:10.5194/angeo-26-3653-2008.
[6] Blanco-Cano, X., N. Omidi, and C. T. Russell (2006), Macrostructure of collisionless bow shocks: 2. ULF waves in the foreshock and magnetosheath, J. Geophys. Res., 111, A10205, doi:10.1029/2005JA011421.
[7] Blanco-Cano, X., N. Omidi, and C. T. Russell (2009), Global hybrid simulations: Foreshock waves and cavitons under radial interplanetary magnetic field geometry, J. Geophys. Res., 114, A01216, doi:10.1029/2008JA013406.
[8] Blanco-Cano, X., and S. J. Schwartz (1997), Identification of low frequency kinetic wave modes in the Earth’s ion foreshock, Ann. Geophys., 15, 273–288 , doi:10.1007/s00585-997-0273-1.
[9] Burgess, D. (1997), What do we really know about upstream waves?, Adv. Space Res., 20(4–5), 673–682, doi:10.1016/S0273-1177(97)00455-9.
91
[10] Burlaga, L. F. (1971), Hydromagnetic waves and discontinuities in the solar wind, Space Sci. Rev., 12, 600–657, doi:10.1007/BF00173345.
[11] Chao, J. K. (1970), Interplanetary collisionless shock waves, Rep. CSR TR-70-3, Cent. for Space Res., Mass. Inst. of Technol., Cambridge.
[12] Chao, J. K., D. J. Wu, C.-H. Lin, Y. H. Yang, X. Y. Wang, M. Kessel, S. H. Chen, and R. P. Lepping (2002), Models for the size and shape of the Earth′s magnetopause and bow shock, in Space Weather Study Using Multipoint Techniques, COSPAR Colloq. Ser., vol. 12, edited by L.-H. Lyu, pp. 127–134, Pergamon, Oxford.
[13] Colburn, D. S., and C. P. Sonett (1966), Discontinuities in the solar wind, Space Sci. Rev., 5, 439–506, doi:10.1007/BF00240575.
[14] Dimmock, A. P., Walker, S. N., Zhang, T. L., and Pope, S. A.: Spatial scales of the magnetic ramp at the Venusian bow shock, Ann. Geophys., 29, 2081-2088, doi:10.5194/angeo-29-2081-2011, 2011
[15] Edmiston, J. P., C. F. Kennel, and D. Eichler (1982), Escape of heated ions upstream of a quasiparallel shock, J. Geophys. Res..
[16] Ellison, D. C. (1981), Monte Carlo simulation of charged particles upstream of the earth′s bow shock, Geophys. Res. Lett., 8, 991.
[17] Eastwood, J. P., A. Balogh, M. W. Dunlop, T. S. Holbury, and I. Dandouras (2002), Cluster observations of fast magnetosonic waves in the terrestrial foreshock, Geophys. Res. Lett., 29(22), 2046, doi:10.1029/2002GL015582.
[18] Eastwood, J. P., A. Balogh, E. A. Lucek, C. Mazelle, and I. Dandouras (2003), On the existence of Alfvén waves in the terrestrial foreshock, Ann. Geophys., 21, 1457–1465, doi:10.5194/angeo-21-1457-2003.
[19] Eastwood, J. P., A. Balogh, C. Mazelle, I. Dandouras, and H. Rème (2004), Oblique propagation of 30 s period fast magnetosonic foreshock waves: A Cluster case
92
study, Geophys. Res. Lett., 31, L04804, doi:10.1029/2003GL018897.
[20] Eastwood, J. P., A. Balogh, E. A. Lucek, C. Mazelle, and I. Dandouras (2005a), Quasi‐monochromatic ULF foreshock waves as observed by the four‐spacecraft Cluster mission: 1. Statistical properties, J. Geophys. Res., 110, A11219, doi:10.1029/2004JA010617.
[21] Eastwood, J. P., A. Balogh, E. A. Lucek, C. Mazelle, and I. Dandouras (2005b), Quasi-monochromatic ULF foreshock waves as observed by the four-spacecraft Cluster mission: 2. Oblique propagation, J. Geophys. Res., 110, A11220, doi:10.1029/2004JA010618.
[22] Eastwood, J. P., E. A. Lucek, C. Mazelle, K. Meziane, Y. Narita, J. S. Pickett, and R. A. Treumann (2005c), The foreshock, Space Sci. Rev., 118, 41–94, doi:10.1007/s11214-005-3824-3.
[23] Elaoufir, J. A., A. Mangeney, T. Passot, C. C. Harvey, and C. T. Russell (1990), Large amplitude MHD waves in the Earth’s proton foreshock, Ann. Geophys., 8, 297– 307.
[24] Fairfield, D. H. (1969), Bow shock associated waves observed in the far upstream interplanetary medium, J. Geophys. Res., 74(14), 3541–3553, doi:10.1029/JA074i014p03541.
[25] Fuselier, S. A. (1995), Ion distributions in the Earth’s foreshock upstream from the bow shock, Adv. Space Res., 15(8–9), 43–52, doi:10.1016/0273-1177(94)00083-D.
[26] Gary, S. P. (1991), Electromagnetic ion/ion instabilities and their consequences in space plasmas: A review, Space Sci. Rev., 56(3–4), 373–415, doi:10.1007/BF00196632.
[27] Gary, S. P., J. T. Gosling, and D. W. Forslund (1981), The electromagnetic ion beam instability upstream of the Earth′s bow shock, J. Geophys. Res., 86(A8), 6691–6696,
93
doi:10.1029/JA086iA08p06691.
[28] Greenstadt, E. W., G. Le, and R. J. Strangeway (1995), ULF waves in the foreshock, Adv. Space Res., 15(8/9), 71–84,doi: 10.1016/0273-1177(94)00087-H.
[29] Hada, T., C. F. Kennel, and T. Terasawa (1987), Excitation of compressional waves and the formation of shocklets in the Earth′s foreshock, J. Geophys. Res., 92(A5), 4423–4435, doi:10.1029/JA092iA05p04423.
[30] Hobara, Y., S. N. Walker, M. Balikhin, O. A. Pokhotelov, M. Dunlop, H. Nilsson, and H. Rème (2007),Characteristics of terrestrial foreshock ULF waves: Cluster observations, J. Geophys. Res., 112, A07202, doi:10.1029/2006JA012142.
[31] Horbury, T. S., D. Burgess, M. Fränz, and C. J. Owen (2001), Three spacecraft observations of solar wind discontinuities, Geophys. Res. Lett., 28, 677–680, doi:10.1029/2000GL000121.
[32] Hoppe, M. M., C. T. Russell, L. A. Frank, T. E. Eastman, and E. W. Greenstadt (1981), Upstream hydromagnetic waves and their association with backstreaming ion populations: ISEE 1 and 2 observations, J. Geophys. Res., 86(A6), 4471–4492, doi:10.1029/JA086iA06p04471.
[33] Hudson, P. D. (1965), Reflection of charged particles by plasma shocks, Mon. Not. R. Astron. Soc., 131, 23.
[34] Hudson, P. D. (1970), Discontinuities in an anisotropic plasma and their identification in the solar wind, Planet. Space Sci., 18, 1611–1622, doi:10.1016/0032-0633(70)90036-X.
[35] Hsieh, W.-C., and J.-H. Shue (2013), Dependence of the oblique propagation of ULF foreshock waves on solar wind parameters, J. Geophys. Res. Space Physics, 118, 4151–4160, doi:10.1002/jgra.50225.
94
[36] Hsieh, W.-C., J.-H. Shue, J.-K. Chao, T.-C. Tsai, Z. Nemecek, and J. Safrankova (2014), Possible observational evidence of contact discontinuities, Geophys. Res. Lett., 41, doi:10.1002/2014GL062342.
[37] Kajdič, P., X. Blanco‐Cano, N. Omidi, and C. T. Russell (2011), Multispacecraft study of foreshock cavitons, Planet. Space Sci., 59, 705–714, doi:10.1016/j.pss.2011. 02.005.
[38] Knetter, T., F. M. Neubauer, T. Horbury, and A. Balogh (2004), Four-point discontinuity observations using Cluster magnetic field data: A statistical survey, J. Geophys. Res., 109, A06102, doi:10.1029/2003JA010099.
[39] Landau, L. D., and E. M. Lifshitz (1960), Electrodynamics of continuous media, Pergamon Press.
[40] Lapenta, G., and J. U. Brackbill (1996), Contact discontinuities in collisionless plasmas: A comparison of hybrid and kinetic simulations, Geophys. Res. Lett., 23(14), 1713, doi:10.1029/96GL01845.
[41] Le, G., and C. T. Russell (1994), The morphology of ULF waves in the Earth’s foreshock, in Solar Wind Sources of Magnetospheric Ultra Low Frequency Waves, Geophys. Monogr. Ser., vol. 81, edited by M. J. Engebretson, K. Takahashi, and M. Scholer, pp. 87–98, AGU, Washington, D. C.
[42] Lee, M. A. (1982), Coupled hydromagnetic wave excitation and ion acceleration upstream of the Earth′s bow shock, J. Geophys. Res., 87(A7), 5063–5080, doi:10.1029/JA087iA07p05063.
[43] Lee, M. A. (1983), Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks, J. Geophys. Res., 88(A8), 6109–6119, doi:10.1029/JA088iA08p06109.
95
[44] Lee, M. A., and W.-H. Ip (1987), Hydromagnetic wave excitation by ionized interstellar hydrogen and helium in the solar wind, J. Geophys. Res., 92(A10), 11041–11052, doi:10.1029/JA092iA10p11041.
[45] Lepping, R., and K. Behannon (1980), Magnetic field directional discontinuities: 1. Minimum variance errors, J. Geophys. Res., 85(A9), 4695–4703, doi:10.1029/JA085iA09p04695.
[46] Lin, Y., and L. C. Lee (1993a), Structure of Reconnection Layers in the Magnetosphere, Space Science Reviews, 65(1-2), pp. 59-179
[47] Lin, Y., and L. C. Lee (1993b), Structure of the dayside reconnection layer in resistive MHD and hybrid models, J. Geophys. Res., 98(A3), 3919–3934, doi:10.1029/92JA02363.
[48] Mazelle, C., et al. (2003), Production of gyrating ions from nonlinear wave particle interaction upstream from the Earth’s bow shock: A case study from Cluster‐CIS, Planet. Space Sci., 51, 785–795, doi:10.1016/j.pss.2003. 05.002.
[49] McFadden, J. P., C. W. Carlson, D. Larson, V. Angelopoulos, M. Ludlam, R. Abiad, and B. Elliot (2008), The THEMIS ESA plasma instrument and in-flight calibration, Space Sci. Rev., 141, 277–302, doi:10.1007/s11214-008-9440-2.
[50] Narita, Y., K.-H. Glassmeier, S. Schäfer, U. Motschmann, M. Fränz, I. Dandouras, K.-H. Fornaçon, E. Georgescu, A. Korth, H. Rème, and I. Richter (2004), Alfvén waves in the foreshock propagating upstream in the plasma rest frame: statistics from Cluster observations, Ann. Geophys., 22, 2315–2323, doi:10.5194/angeo-22-2315-2004, 2004.
[51] Narita, Y., K.-H. Glassmeier, S. Schäfer, U. Motschmann, K. Sauer, I. Dandouras, K.-H. Fornaçon, E. Georgescu, and H. Rème (2003), Dispersion analysis of ULF waves in the foreshock using cluster data and the wave telescope technique, Geophys.
96
Res. Lett., 30(13), 1710, doi:10.1029/2003GL017432.
[52] Neugebauer, M., D. R. Clay, B. E. Goldstein, B. T. Tsurutani, and R. D. Zwickl (1984), A reexamination of rotational and tangential discontinuities in the solar wind, J. Geophys. Res., 89(A7), 5395–5408, doi:10.1029/JA089iA07p05395.
[53] Omidi, N., D. G. Sibeck, and X. Blanco‐Cano (2009), Foreshock compressional boundary, J. Geophys. Res., 114, A08205, doi:10.1029/2008JA013950.
[54] Parks, G. K., et al. (2006), Larmor radius size density holes discovered in the solar wind upstream of Earth’s bow shock, Phys. Plasmas, 13, 050701, doi:10.1063/1.2201056.
[55] Russell, C. T., and M. Hoppe (1983), Upstream waves and particles, Space Sci. Rev., 34, 155, doi:10.1007/BF00194624.
[56] Russell, C. T., W. Riedler, K. Schwingenschuh, and Ye. Yeroshenko (1987), Mirror instability in the magnetosphere of comet Halley, Geophys. Res. Lett., 14(6), 644–647, doi:10.1029/GL014i006p00644.
[57] Schwartz, S. J. (1995), Hot flow anomalies near the Earth’s bow shock, Adv. Space Res., 15(8–9), 107–116, doi:10.1016/0273-1177(94)00092-F.
[58] Schwartz, S. J. (1998), Shock and discontinuity normals, mach numbers, and related parameters, ISSI Sci. Rep. Ser., 1, 249–270.
[59] Schwartz, S. J., D. Sibeck, M. Wilber, K. Meziane, and T. S. Horbury (2006), Kinetic aspects of foreshock cavities, Geophys. Res. Lett., 33, L12103, doi:10.1029/2005GL025612.
[60] Schwartz, S. J., M. F. Thomsen, and J. T. Gosling (1983), Ions upstream of the Earth′s bow shock: A theoretical comparison of alternative source populations, J. Geophys. Res., 88(A3), 2039–2047, doi:10.1029/JA088iA03p02039.
97
[61] Sentman, D. D., J. P. Edmiston, and L. A. Frank (1981), Instabilities of low frequency, parallel propagating electromagnetic waves in the Earth′s foreshock region, J. Geophys. Res., 86(A9), 7487–7497, doi:10.1029/JA086iA09p07487.
[62] Shue, J.-H., et al. (1998), Magnetopause location under extreme solar wind conditions, J. Geophys. Res., 103, 17,691–17,700, doi:10.1029/98JA01103.
[63] Sibeck, D. G., N. Omidi, I. Dandouras, and E. Lucek (2008), On the edge of the foreshock: Model data comparisons, Ann. Geophys., 26, 1539–1544, doi:10.5194/angeo-26-1539-2008.
[64] Sibeck, D. G., T.‐D. Phan, R. Lin, R. P. Lepping, and A. Szabo (2002), Wind observations of foreshock cavities: A case study, J. Geophys. Res., 107(A10), 1271, doi:10.1029/2001JA007539.
[65] Smith, E. J. (1973), Identification of interplanetary tangential and rotational discontinuities, J. Geophys. Res., 78(13), 2054–2063, doi:10.1029/JA078i013p02054.
[66] Song, P., and C. T. Russell (1999), Time series data analyses in space physics, Space Sci. Rev., 87, 387–463, doi:10.1023/A:1005035800454.
[67] Song, P., C. T. Russell, and S. P. Gary (1994), Identification of low-frequency fluctuations in the terrestrial magnetosheath, J. Geophys. Res., 99(A4), 6011–6025, doi:10.1029/93JA03300.
[68] Sonnerup, B. U. Ö. (1969), Acceleration of particles reflected at a shock front, J. Geophys. Res., 74, 1301.
[69] Sonnerup, B. U., and L. J. Cahill Jr. (1967), Magnetopause structure and attitude from Explorer 12 observations, J. Geophys. Res., 72(1), 171–183, doi:10.1029/JZ072i001p00171.
98
[70] Sonnerup, B. U. O., and M. Scheible (1998), Minimum and maximum variance analysis, in Analysis Methods for Multi-spacecraft Data, edited by G. Paschmann and P. W. Daly, Eur. Space Agency Spec. Publ., ESA SP-449, 185–220.
[71] Tsai, T. C., L. H. Lyu, J. K. Chao, M. Q. Chen, and W. H. Tsai (2009), A theoretical and simulation study of the contact discontinuities based on a Vlasov simulation code, J. Geophys. Res., 114, A12103, doi:10.1029/2009JA014121.
[72] Tsurutani, B. T., G. S. Lakhina, O. P. Verkhoglyadova, W. D. Gonzalez, E. Echer, and F. L. Guarnieri (2011), A review of interplanetary discontinuities and their geomagnetic effects, J. Atmos. Sol. Terr. Phys., 73, 5–19.
[73] Watanabe, Y. and T. Terasawa (1984), On the excitation mechanism of the low-frequency upstream waves, J. Geophys. Res., 89(A8), 6623–6630, doi:10.1029/JA089iA08p06623.
[74] Wilber, M., G. K. Parks, K. Meziane, N. Lin, E. Lee, Mazelle, C., and Harris, A. (2008), Foreshock density holes in the context of known upstream plasma structures, Ann. Geophys., 26, 3741-3755, doi:10.5194/angeo-26-3741-2008.
[75] Wilkinson, W. P. (2003), The Earth’s quasi-parallel bow shock: Review of observations and perspectives for Cluster, Planet. Space Sci., 51, 629– 647, doi:10.1016/S0032-0633(03)00099-0.
[76] Wu, B. H., J. K. Chao, W. H. Tsai, Y. Lin, and L. C. Lee (1994), A hybrid simulation of contact discontinuity, Geophys. Res. Lett., 21(18), 2059-2062, doi:10.1029/94GL01579.
[77] Zhang, H., Q.-G. Zong, D. G. Sibeck, T. A. Fritz, J. P. McFadden, K.-H. Glassmeier, and D. Larson (2009), Dynamic motion of the bow shock and the magnetopause observed by THEMIS spacecraft, J. Geophys. Res., 114, A00C12, doi:10.1029/2008JA013488.
99
[78] On line resources︰Artist′s concept of THEMIS in orbit. http://www.nasa.gov/sites/default/files/153094main_themis.jpg..
[79] On line resources︰Visualization of the 20 THEMIS ground station locations. http://www.nasa.gov/images/content/168655main_themis_gbo_net.jpg.
[80] On line resources︰ THEMIS configuration in the magnetotail during a substorm. http://cse.ssl.berkeley.edu/artemis/mission-models.html.
[81] On line resources︰THEMIS configuration in the radiation belts and their source region in the magnetotail. http://themis.ssl.berkeley.edu/overview.shtml.
[82] On line resources︰THEMIS configuration at the dayside magnetopause, in the magnetosheath, foreshock and the solar wind. http://themis.ssl.berkeley.edu/overview.shtml.
[83] On line resources︰OMNI data base website http://omniweb.gsfc.nasa.gov/html/HROdocum.html#3a
指導教授 許志浤(Jih-Hong Shue) 審核日期 2015-3-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明