博碩士論文 993402004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:159 、訪客IP:18.191.228.88
姓名 何庭武(Ting-Wu Ho)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 發展本體論與多代理人模式於高速鐵路緊急調度之研究
(Development of an Ontology-based, Multi-Agent Model for Emergency Dispatching for High-Speed Rail System)
相關論文
★ 路權取得資料探勘與決策輔助工具設計之研究★ 以時空資料庫管理管線單位道路申挖許可之雛形系統研究
★ 關鍵基礎設施相依性模型設計與應用★ 應用RFID技術於室內空間防救災時的疏散指引系統之研究
★ 考量列車迴轉與擾動因子情況下高速鐵路系統最佳化排班設計之研究★ 應用資料探勘分群分類演算法與空間資料庫技術在鋪面裂縫影像辨識之初探
★ 以本體論建構工程程式設計課程之線上考試平台研究★ 結合遙測影像與GIS資料以資料挖掘 技術進行崩塌地辨識-以石門水庫集水區為例
★ 設計整合型手持式行動裝置平台於災害設施損毀資料收集研究★ 考量擾動因子情況下傳統鐵路時刻表建置合併於高速鐵路時刻表模型之回顧與探討
★ 關鍵基礎設施相依性分析:以竹科某晶圓廠區為例★ 建築資訊模型於火災原因調查流程的應用
★ Hadoop雲端平台在工程應用之探討研究★ 關鍵基礎設施投入產出停轉模型之回顧與應用
★ 擴展建築資訊模型於防救災應用:使用Revit平台★ 應用交通資料蒐集與發佈設備及資料探勘法協助觀光地區交通管理策略之研究:以桃園大溪老街為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 高速鐵路與其他軌道運輸系統在設計上最大不同處為具有嚴格的定時運行特性,亦即列車運行、號誌控制,以至於旅客或票務資訊均必須依照時刻表來運作。當高鐵系統遇到災害等緊急事故時,傳統上各調度人員必須互相溝通協調,根據目前系統狀況構思出適合的調度程序,產生對應的列車時刻表。此過程非常仰賴調度人員的溝通效率與專業經驗,耗時且易出錯,不但耽擱旅客時間與減少載客量,亦可能因調度失當造成更多人員傷亡造成;此外,在緊急事故時,高鐵系統的電力供應常成為另一不穩定來源,過去研究甚少探討此因素對於整體調度的影響。經由技術文獻回顧可知,智慧型代理人技術非常適合用於多人協調問題上,故本研究提出以本體論與智慧型代理人技術為基礎之高鐵列車緊急事故調度模式,讓智慧型代理人具備列車調度知識,能夠即刻做出最適決策。本研究首先以本體論設計知識模型來表達包含行控中心控制員、列車駕駛員、基地管理員與電力控制員等,其次,設計列車調度的推論規則來模擬各調度員之間的溝通過程。最後並以高鐵實際案例作為模型測試驗證用,驗證結果顯示此模型能產生與人工調度最佳結果一致的調度班表,且大幅減少人工調度所需時間。應用本研究模型將有助於高鐵在緊急事故時之應變效率與行車安全的提升。
摘要(英) There is a big difference between HSR and traditional railway system is that HSR has a characteristic of strict on-time. The operations include train scheduling, sign control and passengers ticketing information must follow the train timetable. When an incident occurred in the HSR system, each dispatcher has to communicate and coordinate with each other. They cooperate to get the suitable dispatching procedure according to the current situation and generate a corresponding train timetable. This process is dependent on the efficiency of communication and professional experience for dispatchers, it is time-consuming and error-generating. In this way, it not only delayed the passenger time and reduced the passenger capacity but also caused more casualties due to dispatching error. In addition, the power supply often be another source of instability during incident, and the few studies over the past investigated this factor that has an effect on the overall dispatching. In the technical literature review shows that intelligent agent technology is ideally suited for the issue of people coordination. Therefore, this study proposed an ontology-based multi-agent model for emergency dispatching for HSR system. The intelligent agents have the train dispatching knowledge and can instantly make optimal decisions. Firstly, the ontology knowledge model is designed to express each components of the railway system include control controller, train driver, depot manager and power controller. Then, the train dispatching inference rules are designed to simulate the communicated process between each dispatcher. Finally, the HSR real cases are used to testing in verification and validation steps. The experimental results show that proposed model can generated the dispatching procedure is the same as the best human scheduling. Application of proposed model will contribute to increase the response efficiency and train operating safety during emergency for HSR system.
關鍵字(中) ★ 多代理人系統
★ 知識本體論
★ 高速鐵路
★ 列車調度
關鍵字(英) ★ Multi-Agent System
★ Ontology
★ High-Speed Rail
★ Train Dispatching
論文目次 Abstract .. i
摘要 .. ii
誌謝 . iii
Contents iv
List of Figures . vii
List of Tables . ix
Chapter 1 Introduction 1
1.1 Research Background and Motivation . 1
1.2 Research Question and Objectives . 4
1.3 Research Steps .. 5
1.4 Dissertation Structure 6
Chapter 2 Literature Review 7
2.1 Train Scheduling .. 7
2.2 Train Dispatching 9
2.3 Power Failure .. 11
2.4 Ontology-based Multi-Agent System . 12
2.4.1 Multi-Agent System . 12
2.4.2 Ontology . 16
2.4.3 Ontology-based Multi-Agent 17
2.5 Summary 17
Chapter 3 Design of OMAED-HSR .. 19
3.1 Design of MAS Model .. 19
3.2 Design of Ontology . 23
3.3 Inference Rules .. 27
3.3.1 Rule 1: Train Path Existence 27
3.3.2 Rule 2: Node Path Existence 28
3.3.3 Rule 3: Platform Checking 30
3.3.4 Rule 4: Stabling Yard Checking . 31
3.3.5 Rule 5: Spare Train Assignment for Train . 32
3.3.6 Rule 6: Spare Train Assignment for Node . 34
3.3.7 Rule 7: Trailer Assignment 35
3.3.8 Rule 8: Inspection Car Assignment .. 36
3.3.9 Rule 9: Train Movement for Station . 38
3.3.10 Rule 10: Train Movement for Depot . 39
3.3.11 Rule 11: Train Towing .. 41
Chapter 4 Verification and Validation . 43
4.1 Initiating the Platform . 43
4.2 Introduction of Taiwan HSR 46
4.3 Verification .. 48
4.3.1 Damage to Facility 48
4.3.2 Damage to Train . 52
4.3.3 Damage to Train Requiring Tow 55
4.4 Validation .. 58
4.4.1 Case of Study 1 60
4.4.2 Case of Study 2 64
4.4.3 Case of Study 3 68
4.5 Summary 74
Chapter 5 Conclusions .. 77
5.1 Conclusions . 77
5.2 Contributions .. 79
5.3 Suggestions .. 80
Appendix A: DM Increases Effectiveness of OR: Application to High-Speed Rail
Re-scheduling During Disaster . 82
A.1 Introduction 82
A.2 Literature Review 86
A.3 Development of Methodology .. 90
A.3.1 Procedures 90
A.3.2 Re-Scheduling Formulation . 93
A.3.3 Application to THSR .. 96
A.3.4 Scenarios Generation .. 98
A.3.5 Data Pre-processing .. 103
A.3.6 Data Mining Methodology 105
A.3.7 Data Post-processing 109
A.4 Conclusions . 110
Reference . 113
參考文獻 Adenso-Díaz, B., Oliva González, M. and González-Torre, P. (1999). On-line timetable rescheduling in regional train services, Transportation Research Part B, 33(6), 378-398.
Almodóvar, M. and García-Ródenas, R. (2013). On-line reschedule optimization for passenger railways in case of emergencies, Computers and Operations Research, 40, 725-736.
Ameri, F., McArthur, C. (2013). A multi-agent system for autonomous supply chain configuration, The International Journal of Advanced Manufacturing Technology, 66(5-8), 1097-1112.
Assad, A. A. (1980). Models for rail transportation. Transportation Research Part A, 14(3), 205–220.
Bellifemine, F. and Rimassa, G. (2001). Developing multi-agent systems with a FIPA-compliant agent framework. Software-Practice and Experience, 31(2), 103-128.
Bellifemine, F. L., Caire, G. and Greenwood, D. (2007). Developing Multi-agent Systems with JADE, Wiley.
Blum, J. and Eskandarian, A. (2002). Enhancing intelligent agent collaboration for flow optimization of railroad traffic. Transportation Research Part A, 36(10), 919-930.
Bocker, J., Lind, J. and Zirkler, B. (2001). Using a multi-agent approach to optimize the train coupling and sharing system. European Journal of Operational Research, 131(2), 242-252.
Borndörfer, R. and Schlechte, T. (2008). Solving railway track allocation problems. In: Kalcsics, J. and Nickel, S. (Eds.), Operations Research Proceedings, Springer, Berlin/Heidelberg, D, 117-122.
Boudali, I., Jaafar, I. B. and Ghedira, K. (2008). Distributed decision evaluation model in public transportation systems. Engineering Applications of Artificial Intelligence, 419-429.
Brännlund, U., Lindberg, P. O., Nõu, A. and Nilsson, J. E. (1998). Railway Timetabling Using Lagrangian Relaxation, Transportation Science, 32, 358-369.
Brijs, T., Swinnen, G., Vanhoof, K. and Wets, G. (2004). Building an association rules framework to improve product assortment decisions, Data Mining and Knowledge Discovery, 8(1), 7-23.
Cacchiani, V., Caprara, A. and Galli, L. (2012). A variable trip time model for cyclic railway timetabling, Transportation Science, 46(2), 217-232.
Cacchiani, V., Caprara, A. and Toth, P. (2008). A column generation approach to train timetabling on a corridor, Journal of Operations Research, 6, 125-142.
Cacchiani, V., Huisman, D., Kidd, M., Kroon, L., Toth, P., Veelenturf, L. and Wagenaar, J. (2014). An overview of recovery models and algorithms for real-time railway rescheduling. Transportation Research Part B, 63, 15-37.
Caimi, G., Laumanns, M., Schupbach, K., Wörner, S. and Fuchsberger, M. (2011). The periodic service intention as a conceptual framework for generating timetables with partial periodicity, Transportation Planning and Technology, 34(4), 323-339.
Campbell, D., Erdahl, R., Johnson, D., Bibelnieks, E., Haydock, M., Bullock, M. and Crowder, H. (2001). Optimizing customer mail streams at fingerhut, Interfaces, 31(1), 77-90.
Caprara, A., Monaci, M., Toth, P. and Guida, P. L. (2006). A Lagrangian heuristic algorithm for a real-world train timetabling problem, Discrete Applied Mathematics, 154, 738-753.
Carey, M. and Crawford, I. (2007). Scheduling trains on a network of busy complex stations. Transportation Research Part B, 41(2), 159-178.
Carey, M. and Lockwood, D. (1995). A Model, Algorithms and Strategy for Train Pathing, Journal of the Operational Research Society, 46, 988-1005.
Chand, S., Hsu, V. N. and Sethi, S. (2002). Forecast, solution, and rolling horizons in operations management problems: a classified bibliography, Manufacturing and Service Operations Management, 4(1), 25-43.
Chang, S. C., Chung, Y. C. (2005). From timetabling to train regulation-a new train operation model, Information and Software Technology, 47, 575-585.
Cheeseman, M. J., Swann, P., Hesketh, G. B. and Barnes, S. (2005). Adaptive manufacturing scheduling: a flexible and configurable agent-based prototype. Production Planning and Control, 16(5), 479-487.
Chen, B. and Cheng, H. (2010). A review of the applications of agent technology in traffic and transportation systems. IEEE Transactions on Intelligent Transportation Systems, 11(2), 485-497.
Chen, B., Cheng, H. H. and Palen, J. (2009). Integrating mobile agent technology with multi-agent systems for distributed traffic detection and management systems. Transportation Research Part C, 17(1), 1-10.
Chen, M. and Wu, H. (2005). An association-based clustering approach to order batching considering customer demand patterns, Omega, 33(4), 333-343.
Chen, T. Y. and Huang, J. H. (2013). Application of data mining in a global optimization algorithm, Advances in Engineering Software, 66, 24-33.
Chen, T. C. (2014), Study on Train Timetables Generation for Taiwan High-Speed Rail System Using Optimization and Agent Technologies, PhD dissertation, National Central University, Taiwan.
Chmiel, K., Gawinecki, M., Kaczmarek, P. Szymczak, M. and Paprzycki, M. (2005). Efficiency of JADE agent platform. Scientific Programming, 13(2), 159-172.
Chow, W. K., Qu, L. and Pang, C. L. (2004). Incidents on fire and ventilation provision in subway systems in Hong Kong. International Journal of Engineering Performance-Based Fire Codes, 10(3), 41-47.
Cordeau, J. F., Toth, P. and Vigo, D. (1998). A survey of optimization models for train routing and scheduling, Transportation Science, 32, 380-404.
Corman, F., D’Ariano, A., Pacciarelli, D. and Pranzo, M. (2010a). A tabu search algorithm for rerouting trains during rail operations. Transportation Research Part B, 44(1), 175-192.
Corman, F., D’Ariano, A., Pacciarelli, D. and Pranzo, M. (2010b). Centralized versus distributed systems to reschedule trains in two dispatching areas. Public Transport: Planning and Operations 2(3), 219–247.
Corman, F., D’Ariano, A., Pacciarelli, D. and Pranzo, M. (2012). Bi-objective conflict detection and resolution in railway traffic management. Transportation Research Part C, 20(1), 79-94.
Corne, D., Dhaenens, C. and Jourdan, L. (2012). Synergies between operations research and data mining: The emerging use of multi-objective approaches, European Journal of Operational Research, 221(3), 469-479.
D’Ariano, A., Corman, F., Pacciarelli, D. and Pranzo, M. (2008). Reordering and local rerouting strategies to manage train traffic in real time. Transportation Science, 42(4), 405-419.
D’Ariano, A., Pacciarelli, D. and Pranzo, M. (2007). A branch and bound algorithm for scheduling trains in a railway network. European Journal of Operational Research, 183(2), 643-657.
Davidsson, P., Henesey, L., Ramstedt, L., Tornquist, J. and Wernstedt, F. (2005). An analysis of agent-based approaches to transport logistics. Transportation Research Part C, 13, 255-271.
Dibley, M. Li, H. Rezgui, R. and Miles J. (2012). An ontology framework for intelligent sensor-based building monitoring, Automation in Construction, 28, 1-14
Dollevoet, T., Huisman, D., Schmidt, M. and Schobel, A. (2012). Delay management with re-routing of passengers, Transportation Science, 46(1), 74-89.
Dong, H., Ning, B., Cai, B. and Hou, Z. (2010). Automatic Train Control System Development and Simulation for High-Speed Railways. IEEE Circuits and System Magazine, 10(2), 6-18.
Dorfman, M.J. and Medanic, J. (2004). Scheduling trains on a railway network using a discrete event model of railway traffic. Transportation Research Part B, 38(1), 81-98.
Garcia, A. and Lucena, C. (2008). Taming Heterogeneous Agent Architectures. Communications of the ACM, 51(5), 75-81.
Glowacka, K., Henry, R. and May, J. (2009). A hybrid data mining/simulation approach for modelling outpatient no-shows in clinic scheduling, Journal of the Operational Research Society, 60(8), 1056–1068.
Gruber, T. R. (1993). A translation approach to portable ontology specifications. In Knowledge acquisition, 5, 199-220
Hansen, I. A. and Pachl, J. (2008). Railway Timetable and Traffic: Analysis, Modelling and, Simulation. Eurail Press, Hamburg, Germany.
Harrod, S. S. (2012), “A tutorial on fundamental model structures for railway timetable optimization,” Surveys in Operations Research and Management Science, 17, 85-96.
He, L., Zong, M. and Deng, Y. (2005). Analysis on risk factors of urban subway. Journal of Safety Science Technology, 1(3), 33-42.
Heddebaut, M. (2009). Leaky waveguide for train-to-wayside communication based train control. IEEE Transactions on Vehicular Technology, 58(3), 1068–1076.
Higgings, A., Kozan, E. and Ferreira, L. (1997). Heuristic techniques for single line train scheduling, Journal of Heuristics, 3, 43-62.
Huisman, D., Kroon, L. G., Lentink, R. M. and Vromans, M. J. C. M. (2005). Operations Research in passenger railway transportation, Statistica Neerlandica, 59, 467-497.
Iyer, R. V. and Gosh, S. (1995). A distributed decision-making algorithm for railway networks: modeling and simulation. IEEE Transactions on Vehicular Technology, 44(1), 180-191.
Jia, L. M. and Zhang, X. D. (1994). Distributed intelligent railway traffic control: a fuzzy decision making-based approach. Engineering Applications of Artificial Intelligence, 7(3), 311-319.
Jourdan, L. Dhaenens, C. and Talbi, E. (2006). Using datamining techniques to help metaheuristics: a short surbey, Hybrid Metaheuristics, 4030, 57-69.
Kroon, L. G. and Peeters, L. W. P. (2003). A variable trip time model for cyclic railway timetabling, Transportation Science, 37, 198-212.
Lamma, E., Mello, P. and Milano, M. (1997). A distributed constraint-based scheduler, Artificial Intelligence in Engineering, 11, 91-105.
Lee, T. S. and Gosh, S. (2001). Stability of RYNSORD - A decentralized algorithm for railway networks under perturbations, IEEE Transactions on Vehicular Technology, 50(1), 287-301.
Liebchen, C. and Möhring, R.H. (2007). The modeling power of the periodic event scheduling problem: Railway timetables and beyond. In: Geraets, F., Kroon, L., Schoebel, A., Wagner, D. and Zaroliagis, C. (Eds.), Algorithmic Methods for Railway Optimization, Lecture Notes in Computer Science, 4359, Springer, Berlin/ Heidelberg, D, 3-40.
Mannino, C. and Mascis, A. (2009). Optimal real-time traffic control in metro stations, Operations Research, 57(4), 1026-1039.
Mazzarello, M. and Ottaviani, E. (2007). A traffic management system for real-time traffic optimisation in railways. Transportation Research Part B, 41(2), 246-274.
Meisel, S. and Mattfeld, D. (2010). Synergies of operations research and data mining, European Journal of Operational Research, 206, 1-10.
Mes, M., Van Den Heijden, M. and Van Harten, A. (2007). Comparison of agent-based scheduling to look-ahead heuristics for real-time transportation problems, European Journal of Operational Research, 181, 59-75.
Min, Y. H., Park, M. J., Hong, S. P. and Hong, S. H. (2011). An appraisal of a column-generation based algorithm for centralized train-conflict resolution on a metropolitan railway network, Transportation Research Part B, 45(2), 409-429.
Mousavi A, Nordin MJ, Othman ZA (2012). Ontology-driven coordination model for multiagent-based mobile workforce brokering systems, Applied Intelligence, 36(4), 768-787
Muñoz, A., Augusto, J. C., Villa, A. and Botía, J. A. (2011). Design and evaluation of an ambient assisted living system based on an argumentative multi-agent system, Personal and Ubiquitous Computing, 15(4), 377-387.
Nachtigall, K. (1996). Periodic network optimization with different arc frequencies. Discrete Applied Mathematics, 69(1-2), 1-17.
Narayanaswami, S. and Rangaraj, N. (2013). Modelling disruptions and resolving conflicts optimally in a railway schedule, Computers & Industrial Engineering, 64(1), 469-481.
Nash, A., Huerlimann, D., Schuette, J., and Krauss, V. (2004). Computers in Railways IX, chapter RailML: a standard data interface for railroad applications, 233-242, WIT Press.
Nielsen, L. K., Kroon, L. and Maróti, G. (2012). A rolling horizon approach for disruption management of railway rolling stock, European Journal of Operational Research, 220, 496-509.
Ning, B., Tang, T., Dong, H., Wen, D., Liu, D., Gao, S. and Wang, J. (2011). An introduction to parallel control and management for high-speed railway systems. IEEE Transactions on Intelligent Transportation Systems, 12(4), 1473-1483.
Odijk, M. A. (1996). A constraint generation algorithm for the construction of periodic railway timetables. Transportation Research Part B, 30(6), 455-464.
Olafsson, S., Li, X. and Wu, S. (2008). Operations research and data mining, European Journal of Operational Research, 187(3), 1429-1448.
Osei-Bryson, K. M. and Rayward-Smith, V. J. (2009). Data mining and operational research: techniques and applications, Journal of Operational Research Society, 60, 1043-1044.
Parodi, G., Vernazza, G. and Zunino, F. (1996). Stability and deadlock avoidance in distributed system for traffic control. IEEE Transactions on Vehicular Technology, 45(4), 732–743.
Pascoe, R. D. and Eichorn, N. T. (2009). What is communication-based train control? IEEE Vehicular Technology Magazine, 4(4), 16–21.
Şahin, İ. (1999). Railway traffic control and train scheduling based on inter-train conflict management, Transportation Research Part B, 33, 511-534.
Salido, M. A., Abril, M., Barber, F., Ingolotti, L., Tormos, P. and Lova, A. (2007). Domain dependent distributed models for railway scheduling. Knowledge-Based Systems, 20, 186-194.
Serafini, P. and Ukovich, W. (1989). A mathematical model for periodic event scheduling problems. SIAM Journal on Discrete Mathematics, 2, 550-581.
Siahvashi, A. and Moaveni, B. (2010). Automatic train control based on the multi-agent control of cooperative systems. Journal of Mathematics Computer Science, 1(4), 247-257.
Stanford University (2011). The Protege ontology editor and knowledge acquisition system, Stanford University, .
Strotmann, C., (2007). Railway Scheduling Problems and their Decomposition. PhD Thesis, Universität Osnabrück, Germany.
Törnquist Krasemann, J. (2012). Design of an effective algorithm for fast response to the re-scheduling of railway traffic during disturbances, Transportation Research Part C, 20, 62-78.
Törnquist, J. (2005). Computer-based decision support for railway traffic scheduling and dispatching: A review of models and algorithms, Proceedings of ATMOS2005, Palma de Mallorca, Spain, October 2005, Published within the Dagstuhl Research Online Publication Server (DROPS).
Törnquist, J. (2007). Railway traffic disturbance management – an experimental analysis of disturbance complexity, management objectives and limitations in planning horizon, Transportation Research Part A, 41, 249-266.
Tornquist, J. and Persson, J. A. (2007). N-tracked railway traffic rescheduling during disturbances. Transportation Research Part B, 41(3), 342-362.
Tran, Q. N. and Low, G. (2008). MOBMAS: A Methodology for Ontology-Based Multi-Agent Systems Development, Information and Software Technology, 50, 697-722.
Tsang, C. W. and Ho, T. K. (2008). Optimal track access rights allocation for agent negotiation in an open railway market. IEEE Transaction on Intelligent Transportation System, 9(1), 68-82.
Vernazza, G. and Zunino, R. (1990). A distributed intelligence methodology for railway traffic control. IEEE Transactions on Vehicular Technology, 39 (3), 263-270.
Wang, F. Y. (2005). Agent-based control for networked traffic management systems. IEEE Intelligent Systems, 20(5), 92-96.
Wang, F. Y. (2008). Toward a revolution in transportation operations: AI for complex systems. IEEE Intelligent Systems, 23(6), 8-13.
Wang, G., Wong, T. N. and Wang, X. (2013). An ontology based approach to organize multi-agent assisted supply chain negotiations. Computers and Industrial Engineering, 65, 2-15.
Wang, M. H., Lee, C. S., Hsieh, K. L., Hsu, C. Y., Acampora, G. and Chang, C. C. (2010). Ontology-based multi-agents for intelligent healthcare applications, Journal of Ambient Intelligence and Humanized Computing, 1(2), 111-131.
Wei, C. C. and Hsu, N. S. (2009). Optimal tree-based release rules for real-time flood control operations on a multipurpose multireservoir system, Journal of Hydrology, 365(3-4), 213-224.
Weng, J., Zheng, Y. Yan, X. and Meng, Q. (2014). Developmen of a subway operation incident delay model using accelerated failure time approaches. Accident Analysis and Prevention, 73, 12-19.
Wooldridge, M. and Jennings, N. R. (1995). Intelligent agents: theory and practice, The Knowledge Engineering Review, 10, 115-152.
Yang, L., Zhou, X. and Gao, Z. (2014). Credibility-based rescheduling model in a double-track railway network: a fuzzy reliable optimization approach. Omega, 48, 75-93.
Zhao, D., Dai, Y. and Zhang, Z. (2012). Computational intelligence in urban traffic signal control: a survey. IEEE Transportation System, Man, and Cybernetics Part C, 42(4), 485-494.
Zhou, X. and Zhong, M. (2005). Bicriteria train scheduling for high-speed passenger railroad planning applications, European Journal of Operational Research, 167, 752-771.
指導教授 周建成(Chien-Cheng Chou) 審核日期 2015-6-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明