博碩士論文 102324022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.225.95.229
姓名 陳鴻昇(Hong-sheng Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用核殼結構次微米球建構具耐溶劑性質及機械性質之光子晶體膜
(Photonic Crystal Films with Excellent Solvent Resistance and Mechanical Properties by Using Core-Shell Submicrospheres)
相關論文
★ 快速合成具核殼結構之均ㄧ粒徑次微米球與其表面改質之特性研究★ 高效率染料敏化太陽能電池及製備次模組元件之研究
★ 利用次微米球建構具機械性質之光子晶體薄膜★ 電漿高分子聚合膜對二氧化碳及甲烷氣體之分離性研究
★ 同時聚合下製備聚苯乙烯/矽膠高分子混成體★ 甲基丙烯酸酯系列團聯共聚物為界面活性劑之迷你乳化聚合研究
★ 含水溶性藥物之乙基纖維素微膠囊的製備★ 銅箔基板環氧樹脂含浸液之研究
★ 含光敏感單體之甲基丙烯酸酯系列正型光阻之製備★ 溶膠-凝膠法製備聚甲基丙烯酸甲酯 / 二氧化矽混成體之研究
★ 均一粒徑無乳化劑次微米粒子之合成及種子溶脹製備均一粒徑微米級之緻密或交聯結構粒子★ 溶膠-凝膠法製備環氧樹脂/二氧化矽有機無機混成體
★ 溶膠-凝膠法製備相轉移材料微膠囊★ 親疏水性光阻製備
★ 奈米多孔性材料之製備★ 分子拓印高分子之製備
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究乃利用無乳化劑乳化聚合法於沸騰狀態,搭配二階段單體添加的製備方式,設計一系列具有硬核心以及軟殼層之均一粒徑核殼結構次微米球,硬核心提供光子晶體膜所需要的結晶性質,維持周期性之規則排列,軟殼層則作為黏著劑的角色,增加球與球之間高分子鏈相互纏繞的連結力,提升光子晶體成膜性質。
研究之核殼結構次微米球包含PS/PBA、PS/PBMA、PS/P(BA-co-SCA)、PS/P(BA-co-SCA-co-DVB)、P(St-co-MMA-co-DVB)/P(BA-co-SCA)、P(St-co-MMA-co-DVB)/P(BMA-co-SCA)。當自交聯劑(Self-crosslinking agent, SCA)導入二階段添加單體程序當中,有助於次微米球內形成明顯核心以及殼層結構,使殼層能夠有效改質核心,達到所需之性質;並藉由核心及殼層之折射率差,使光子晶體膜能夠顯示結構性色彩。同時,SCA添加量適當時,其提供之官能基作用力可增加顆粒於室溫自組裝時,排列之規則度,進而提升光子晶體膜之光學性質。另一方面,透過SCA的官能基團進一步行自交聯反應,於殼層高分子相互纏繞形成的連續相內,產生共價鍵結之網狀交聯體結構,可應用於提升光子晶體薄膜的機械強度及耐溶劑性質。
摘要(英) In this study, monodispersed core-shell submicrospheres were prepared by two-step soap-free emulsion polymerization at boiling state. Hard core provided crystalline ability that maintain periodic array. On the other hand, soft shell as the role of adhesive between particles that improved film-forming property of photonic crystal(PC).
The monodispersed core-shell submicrospheres were PS/PBA, PS/PBMA, PS/P(BA-co-SCA), PS/P(BA-co-SCA-co-DVB), P(St-co-MMA-co-DVB)/P(BA-co-SCA),P(St-co-MMA-co-DVB)/P(BMA-co-SCA).
The core-shell structure submicrospheres were obtained by introducing SCA (Self-crosslinking agent). So, PC could exhibit structure colors by these submicrospheres. Photonic bandgap were improved by appropriate amount of SCA which could increase regular arrangement by functional force interparticles. Moreover, functional groups of SCA were further reacted by self-condensation to form network structure to improve the mechanical strength and solvent-resistance properties of PC.
關鍵字(中) ★ 無乳化劑乳化聚合
★ 均ㄧ粒徑核殼結構次微米球
★ 自交聯劑
★ 光子晶體
★ 機械強度
★ 耐溶劑性質
關鍵字(英)
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 XI
第一章 緒論 1
第二章 實驗 8
2-1 實驗藥品 8
2-2實驗儀器 10
2-3實驗方法 11
2-3-1 單體精製 11
2-3-2 快速製備具核殼結構之均一粒徑次微米球 11
2-3-2-1核殼結構次微米球之製備 12
2-3-2-2核心具交聯之核殼結構次微米球之製備 13
2-3-2-3殼層具交聯之核殼結構次微米球之製備 14
2-3-3 光子晶體之製備 15
2-3-4 反蛋白石光子晶體之製備 15
2-4 儀器分析 15
2-4-1 掃描式電子顯微鏡(SEM)測試條件 15
2-4-2 動態粒徑分析儀(DLS)測試條件 15
2-4-3 紫外-可見光光譜儀(UV-vis)測試條件 16
2-4-4 微差掃描熱分析儀(DSC)測試條件 16
2-4-5 鉛筆硬度機(Pencil Hardness)測試條件 16
2-4-6 拉伸測試 16
第三章 結果與討論 17
3-1 PS/PBA及PS/PBMA核殼結構次微米球之研究 20
3-1-1 PS/PBA核殼結構次微米球之研究 20
3-1-1-1 粒徑與表面型態分析 20
3-1-1-2 光學性質之探討 21
3-1-2 PS/PBMA核殼結構次微米球之研究 21
3-1-2-1 粒徑與表面型態分析 21
3-1-2-2 光學性質之探討 22
3-2 PS/P(BA-co-NMA)核殼結構次微米球之研究 34
3-2-1 粒徑與表面型態分析 34
3-2-2 光學性質之探討 36
3-2-3 機械強度特性 36
3-2-4 反蛋白石結構之製備 37
3-2-4-1表面型態分析 38
3-3 PS/P(BA-co-NMA-co-DVB)核殼結構次微米球之研究 49
3-3-1 粒徑與表面型態分析 49
3-3-2 光學性質之探討 50
3-4 P(St-co-MMA-co-DVB)/P(BA-co-NMA)核殼結構次微米球之研究 57
3-4-1 P(St-co-MMA-co-DVB)/P(BA-co-NMA)核殼結構次微米球 57
3-4-1-1 粒徑與表面型態分析 57
3-4-1-2 光學性質之探討 59
3-4-1-3 熱性質分析 60
3-4-1-4 有效折射率 60
3-4-1-5 機械強度特性 62
3-4-1-6 耐溶劑測試 63
3-4-2 減少P(St-co-MMA-co-DVB)硬核心比例之核殼結構次微米球 64
3-4-2-1 粒徑與表面型態分析 65
3-4-2-2 光學性質之探討 66
3-4-2-3 機械強度特性 66
3-5 P(St-co-MMA-co-DVB)/P(BMA-co-NMA)核殼結構次微米球之研究 97
3-5-1 粒徑與表面型態分析 97
3-5-2 熱性質分析 98
3-5-3 光學性質之探討 99
3-5-4 有效折射率 99
3-5-5 機械強度特性 100
3-5-6 耐溶劑測試 101
第四章 結論 123
參考文獻 126
參考文獻 1. C.H. Hung, L.A. Wiest, B. Singh, A. Diwan, et al. Improved efficiency of reversed-phase carbon / nanodiamond / polymer core-shell particles for HPLC using carbonized poly (divinylbenzene) microspheres as the core materials. Journal of Separation Science 2013,36:3821–3829.
2. D. Li, Yuan. L, X.Y. Houa, J.F. Chen, Z.G. Shen. Colored nanoparticles dispersions as electronic inks for electrophoretic display. Synthetic Metals 2011,161:1270– 1275.
3. H. Zhou, Y. Xu, H. Tong, Y. Liu, F. Han, X. Yan, S. Liu. Direct Synthesis of Surface Molecularly Imprinted Polymers Based on Vinyl-SiO2 Nanospheres for Recognition of Bisphenol A. Journal of Applied Polymer Science 2013,128:3846–3852.
4. M.S. Murib, W.S. Yeap, D. Martens, X. Liu, P. Wagner, et al. Photonic studies on polymer-coated sapphire-spheres: A model system for biological ligands. Sensors and Actuators A-Physical 2015,222:212–219.
5. S.K. Lee, S.H. Kim, J.H. Kang, S.G. Park, et al. Optofluidics technology based on colloids and their assemblies. Microfluidics and Nanofluidics 2008,4:129–144.
6. J.C. Crocker, D.G. Grier. Methods of Digital Video Microscopy for Colloidal Studies. Journal of Colloid and Interface Science 1996,179:298–310.
7. C. Du, T. Wei, H. Zheng, L. Wang, et al. Size-controllable nanopyramids photonic crystal selectively grown on p-GaN for enhanced light-extraction of light-emitting diodes. Optics Express 2013, 21:25373-25380.
8. S. Li, D. Xue, J. Wang, C. Shu, et al. Improving the photo current of the [60] PCBM /P3HT photodetector device by using wavelength-matched photonic crystals. Journal of Materials Chemistry C 2014, 2:1500–1504.
9. J. Zhou, H. Li, J. Wang, Y. Song, et al. Facile Fabrication of Tough SiC Inverse Opal Photonic Crystals. Journal of Physical Chemistry C 2010, 114, 22303–22308.
10. M. Ma, J.K. Kim, K. Zhang, J.H. Park, et al. Double-Deck Inverse Opal Photoanodes: Efficient Light Absorption and Charge Separation in Heterojunction. Chemistry of Materials 2014,26:5592−5597.
11. J.W. Kim, K.D. Suh. Monodisperse micron-sized polystyrene particles by seeded polymerization: effect of seed crosslinking on monomer swelling and particle morphology. Polymer 2000,41:6181-6188.
12. K. Zhang, W. Wu, H. Meng, K. Guo, J.F. Chen. Pickering emulsion polymerization: Preparation of polystyrene/nano-SiO2 composite microspheres with core-shell structure. Powder Technology 2009,190:393-400.
13. T. Yamamoto, Y. Kanda, K. Higashitani. Molecular-scale observation of formation of nuclei in soap-free polymerization of styrene. Langmuir 2004,20:4400-4405.
14. T. Yamamoto, M. Nakayama, Y. Kanda, K. Higashitani. Growth mechanism of soap-free polymerization of styrene investigated by AFM. J Colloid Interface Sci 2006,297:112-121.
15. A. Rogozea, F. Savonea, A. Caragheorgheopol, I.C. Bujanca, M. Dimonie. Soap Free Emulsion Polymerization. A spin probe study of the colloid system in the early stages of reaction. Revue Roumaine De Chimie 2011,56:351-362.
16. T. Matsumoto, A. Ochi. Polymerization of Styrene in Aqueous Solution. Kobunshi Kagaku 1965,22:481-487.
17. D. Nagao, T. Sakamoto, H. Konno, S. Gu, M. Konno. Preparation of micrometer-sized polymer particles with control of initiator dissociation during soap-free emulsion polymerization. Langmuir 2006,22:10958-10962.
18. Z. Z. Gu, H. Chen, S. Zhang, L. Sun, Z. Xie, Y. Ge. Rapid synthesis of monodisperse polymer spheres for self-assembled photonic crystals. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2007,302:312-319.
19. X. Du, J. He. Facile size-controllable syntheses of highly monodisperse polystyrene nano- and microspheres by polyvinylpyrrolidone-mediated emulsifier-free emulsion polymerization. Journal of Applied Polymer Science 2008,108:1755-1760.
20. S.T. Camli, F. Buyukserin, M.S. Yavuz, G.G. Budak. Fine-tuning of functional poly(methylmethacrylate) nanoparticle size at the sub-100 nm scale using surfactant-free emulsion polymerization. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2010,366:141-146.
21. G. Liu, P. Liu. Synthesis of monodispersed crosslinked nanoparticles decorated with surface carboxyl groups via soapless emulsion polymerization. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2010,354:377-381.
22. E. Rusen, A. Mocanu, B. Marculescu, R. Somoghi, L. Butac, F. Miculescu, et al. Obtaining complex structures starting from monodisperse poly(styrene-co-2-hydroxyethylmethacrylate) spheres. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2011,375:35-41.
23. Y.Y. Liu, M.Y. Lo, H. Chen. Characterization of Monodisperse Copolymer Submicrospheres with Branched Structures and Different Glass-Transition Temperatures Prepared by Soap-Free Emulsion Polymerization. Journal of Applied Polymer Science 2011,120:2945-2953.
24. S. John. Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Physical Review Letters 1987,58:2486-2489.
25. E. Yablonovitch. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters 1987,58:2059-2062.
26. Hui Wang and Ke-Qin Zhang. Photonic Crystal Structures with Tunable Structure Color as Colorimetric. Journal of Sensors 2013, 13, 4192-4213.
27. K. Liu, T.A. Schmedake, R. Tsu. A comparative study of colloidal silica spheres: Photonic crystals versus Bragg′s law. Physics Letters A 2008,372:4517-4520.
28. L.P. Biro, Z. Balint, K. Kertesz, Z. Vertesy, G.I. Mark, Z.E. Horvath, et al. Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair. Physical Review E 2003,67.
29. L.P. Biro, K. Kertesz, Z. Vertesy, G.I. Mark, Z. Balint, V. Lousse, et al. Living photonic crystals: Butterfly scales - Nanostructure and optical properties. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 2007,27:941-946.
30. T.F. Krauss, R.M. DeLaRue, S. Brand. Two-dimensional photonic-bandgap structures operating at near infrared wavelengths. Nature 1996,383:699-702.
31. H. Benisty, C. Weisbuch, D. Labilloy, M. Rattier, C.J.M. Smith, T.F. Krauss, et al. Optical and confinement properties of two-dimensional photonic crystals. Journal of Lightwave Technology 1999,17:2063-2077.
32. O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O′Brien, P.D. Dapkus, et al. Two-dimensional photonic band-gap defect mode laser. Science 1999,284:1819-1821.
33. S. Noda, A. Chutinan, M. Imada. Trapping and emission of photons by a single defect in a photonic bandgap structure. Nature 2000,407:608-610.
34. A.J. Wang, S.L. Cheng, P. Dong, X.G. Cai, Q. Zhou, G.M. Yuan, et al. Fabrication of Colloidal Photonic Crystals with Heterostructure by Spin-Coating Method. Chinese Physics Letters 2009,26.
35. Y.N. Xia, B. Gates, Y.D. Yin, Y. Lu. Monodispersed colloidal spheres: Old materials with new applications. Advanced Materials 2000,12:693-713.
36. Z.Z. Gu, Q.B. Meng, S. Hayami, A. Fujishima, O. Sato. Self-assembly of submicron particles between electrodes. Journal of Applied Physics 2001,90:2042-2044.
37. Y. Lin, P.R. Herman, W. Xu. In-fiber colloidal photonic crystals and the formed stop band in fiber longitudinal direction. Journal of Applied Physics 2007,102.
38. L. Cui, Y. Zhang, J. Wang, Y. Ren, Y. Song, L. Jiang. Ultra-Fast Fabrication of Colloidal Photonic Crystals by Spray Coating. Macromolecular Rapid Communications 2009,30:598-603.
39. L. Duan, B. You, L. Wu, M. Chen. Facile fabrication of mechanochromic-responsive colloidal crystal films. Journal of Colloid and Interface Science 2011,353:163-168.
40. C. Sun, Y. Yao, Z. Gu. Fabrication of elastic colloidal crystal films from pure soft spheres. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2012,402:102-107.
41. T. Ito, C. Katsura, H. Sugimoto, E. Nakanishi, K. Inomata. Strain-Responsive Structural Colored Elastomers by Fixing Colloidal Crystal Assembly. Langmuir 2013,29:13951-13957.
42. Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, et al. Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region. Langmuir 2003,19:977-980.
43. H. Fudouzi, T. Sawada. Photonic rubber sheets with tunable color by elastic deformation. Langmuir 2006,22:1365-1368.
44. J.X. Wang, Y.Q. Wen, H.L. Ge, Z.W. Sun, Y.M. Zheng, Y.L. Song, et al. Simple fabrication of full color colloidal crystal films with tough mechanical strength. Macromolecular Chemistry and Physics 2006,207:596-604.
45. I.D. Hosein, C.M. Liddell. Homogeneous, core-shell, and hollow-shell ZnS colloid-based photonic crystals. Langmuir 2007,23:2892-2897.
46. W. Wohlleben, F.W. Bartels, S. Altmann, R.J. Leyrer. Mechano-optical octave-tunable elastic colloidal crystals made from core-shell polymer beads with self-assembly techniques. Langmuir 2007,23:2961-2969.
47. B. Viel, T. Ruhl, G.P. Hellmann. Reversible deformation of opal elastomers. Chemistry of Materials 2007,19:5673-5679.
48. C.E. Finlayson, A.I. Haines, D.R.E. Snoswell, A. Kontogeorgos, S. Vignolini, Baumberg JJ, et al. Interplay of index contrast with periodicity in polymer photonic crystals. Applied Physics Letters 2011,99.
49. C.G. Schaefer, D.A. Smolin, G.P. Hellmann, M. Gallei. Fully Reversible Shape Transition of Soft Spheres in Elastomeric Polymer Opal Films. Langmuir 2013,29:11275-11283.
50. C.G. Schaefer, B. Viel, G.P. Hellmann, M. Rehahn, M. Gallei. Thermo-cross-linked Elastomeric Opal Films. ACS Applied Materials & Interfaces 2013, 5:10623−10632.
51. C.G. Schaefer, C. Lederle, K. Zentel, B. Stuhn, M. Gallei. Macromolecular Rapid Communications 2014, 35:1852−1860.
52. S. Krishnan, A. Klein, M.S. El-Aasser, E.D. Sudol. Influence of Chain Transfer Agent on the Cross-Linking of Poly (n-butylmethacrylate-co-N-methylol acrylamide) Latex Particles and Films. Macromolecules 2003, 36:3511-3518.
53. W. Wohlleben, F.W. Bartels, M. Boyle, R.J. Leyrer. Covalent and Physical Cross-Linking of Photonic Crystals with 10-Fold-Enhanced Chemomechanical Stability. Langmuir 2008, 24:5627-5635.
54. J. Zhou, G. Wang, M. Marquez, Z. Hu. The formation of crystalline hydrogel films by self-crosslinking microgels. Soft Matter, 2009, 5:820–826.
55. A. Zillessen, E. Bartsch. Synthesis of Photo-Cross-Linkable Microgel Colloids for Cluster Formation Studies. Langmuir 2010, 26(1):89–96.
56. G. Guan, Z. Zhang, Z. Wang, B. Liu, D. Gao, C. Xie. Single-Hole Hollow Polymer Microspheres toward Specific High-Capacity Uptake of Target Species. Advanced Materials 2007, 19:2370–2374.
57. L. Xu, H. Li, X. Jiang, J. Wang, L. Li, Y. Song, L. Jiang. Synthesis of Amphiphilic MushroomCap-shaped Colloidal Particles towards Fabrication of Anisotropic Colloidal Crystals. Macromolecular Rapid Communications 2010, 31:1422–1426.
58. X. Fan, X. Jia, H. Zhang, B. Zhang, C. Li, and Q. Zhang. Synthesis of Raspberry-Like Poly (styrene-glycidyl methacrylate) Particles via a One-Step Soap-Free Emulsion Polymerization Process Accompanied by Phase Separation. Langmuir 2013, 29:11730−11741.
59. X. Chen, L. Wang, Y. Wen, Y. Zhang, J. Wang, Y. Song, L. Jiang, D. Zhu. Fabrication of closed-cell polyimide inverse opal photonic crystals with excellent mechanical properties and thermal stability. Journal of Materials Chemistry C 2008, 18:2262–2267.
60. J. Zhou, H. Li, L.Ye, J. Liu, J. Wang, T. Zhao, L. Jiang, Y. Song. Facile Fabrication of Tough SiC Inverse Opal Photonic Crystals. Journal of Physical Chemistry C 2010, 114:22303–22308.
61. L.G. Sun, Z.Y. Xie, Y.J. Zhaoa, H.M. Wei, Z.Z. Gu. Optical monitoring the degradation of PLGA inverse opal film. Chinese Chemical Letters. 2013, 24: 9–12.
62. C.G. Schaefer, T. Winter, S. Heidt, C. Dietz, T. Ding, J. J. Baumberg, M. Gallei. Smart polymer inverse-opal photonic crystal films by melt-shear organization for hybrid core-shell architectures. Journal of Materials Chemistry C 2015, 3: 2204-2214.
63. 羅名譽,「快速合成具核殼結構之均一粒徑次微米球與其表面改質之特性研究」,國立中央大學化學工程與材料工程學系碩士論文(2009)。
64. 陳鴻文,「快速合成具耐溶劑核心之核殼結構次微米球及其應用於光子晶體成膜性質之研究」,國立中央大學化學工程與材料工程學系碩士論文(2014)。


指導教授 陳暉(Hui Chen) 審核日期 2015-6-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明