博碩士論文 102324053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:44.200.49.193
姓名 張育瑄(Yu-hsuan Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 含鈀雙金屬/二氧化矽觸媒在液態氫化反應之應用
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 奈米鈀金屬觸媒於對-氯硝基苯氫化反應上有很好的反應活性,但對目標產物對-氯苯胺的選擇性很低。本研究將分成兩個章節來討論兩種不同系列的觸媒,首先本研究擔載鈀金屬於三種不同的二氧化矽上,接下來製備一系列的雙金屬鈀觸媒於二氧化矽上(鎳-鈀/二氧化矽、鉑-鈀/二氧化矽、銀-鈀/二氧化矽、鐵-鈀/二氧化矽),分別找出兩種系列中對本反應有最適化之反應活性與選擇性的觸媒。本研究中所有的觸媒皆是使用含浸法製備,並且進行對-氯硝基苯氫化反應之測試。本研究以下列幾種儀器來鑑定觸媒之物理、化學特性及表面性質:X光繞射儀(XRD)、穿透式電子顯微鏡(TEM)、高解析度穿透式電子顯微鏡(HRTEM)、X光光電子能譜儀(XPS),觸媒活性及選擇性則是利用液相選擇性對-氯硝基苯氫化反應來測試,使用的反應器為半批式反應器(Parr Reactor 4842),反應條件如下:反應溫度298 K,氫氣分壓為0.41 MPa,反應器攪拌速率為300 r.p.m.,反應物初濃度為0.2 M (2.54 g對-氯硝基苯粉末溶於80 ml甲醇),使用0.1 g觸媒進行反應,反應過程中每10分鐘取樣,並以氣相層析儀分析。X光繞射儀分析結果顯示本研究中所使用的二氧化矽皆為非晶態,且金屬顆粒因為尺寸過小而無法偵測到;由穿透式電子顯微鏡影像中可以得知,鈀金屬二氧化矽觸媒系列之二氧化矽平均尺寸為35-75奈米,其金屬平均尺寸則落於2-4奈米之間,而雙金屬二氧化矽觸媒系列之二氧化矽平均尺寸為50-125奈米,其金屬平均尺寸為2-4奈米。高解析度穿透式電子顯微鏡影像顯示,在鈀/釤-二氧化矽及鉑-鈀/二氧化矽中皆可以觀察到鈀(111)之晶格影像。由X光光電子能譜儀分析結果得知,當加入鉑於鈀觸媒後,觸媒表面之金屬鈀的含量會降低,導致鉑-鈀/二氧化矽的反應速率較鈀/二氧化矽低。反應結果顯示鈀/二氧化矽系列中的三種觸媒皆對對-氯苯胺有很低的選擇率,其中以鈀/釤-二氧化矽的活性最高;而雙金屬鈀觸媒則都表現出很高的活性,其中只有鉑-鈀/二氧化矽觸媒有提高對對-氯苯胺的選擇率。
摘要(英) Nanosized palladium catalyst has been reported to be a good catalyst for hydrogenation reaction. In this study, all the catalysts were prepared by incipient-wetness impregnation method and were tested for p-chloronitrobenzene (p-CNB) hydrogenation reaction. These catalysts were characterized by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, energy dispersive spectrometer and X-ray photoelectron spectroscopy. The liquid-phase p-CNB hydrogenation reaction was carried out in the following condition: 298 K, 0.41 MPa partial pressure of H2, stirring rate 300 rpm in a batch reactor. The reactant was 0.2 M p-CNB methanol solution (2.54 g of p-CNB dissolved in 80 ml methanol) and 0.1 g catalyst was used to carry out the reaction. Samples were withdrawn in each 10 min. The solution was analyzed by a gas chromatography. In XRD pattern, only amorphous SiO2 peak was observed in all the catalyst, and no palladium or other metal peaks were observed because the particle sizes were too small to be detected. The TEM images showed that the average particle sizes of silica support on Pd/SiO2 were between 35 to 75 nm, and the average particle sizes of metal on Pd/SiO2 were about 2-4 nm. On the other hand, the average particle sizes of SiO2 on M-Pd/SiO2 (M = Ni, Pt, Ag and Fe) were around 50-125 nm, and the average particle sizes of metal on M-Pd/SiO2 were about 2-4 nm. From HRTEM images, Pd (111) was observed in Pd/samarium-silica and Pt-Pd/SiO2, the sizes of metal were consistent with TEM images. The XPS analysis indicates that adding platinum into palladium catalyst would decrease the content of Pd0 which plays a role of activity site for hydrogenation reaction on the catalyst surface. It’s the reason why the reaction rate decreases with the order : 1Pd/SiO2 > 0.2Pt1Pd/SiO2. The results of catalytic tests showed that all the three samples on Pd/SiO2 had high activity but very low selectivity for p-chloroaniline. Various bimetallic catalysts, such as Pt-Pd/SiO2, Ni-Pd/SiO2, Ag-Pd/SiO2 and Fe-Pd/SiO2 were tested. The results showed that only Pt-Pd/SiO2 could increase the selectivity of p-CAN and still kept high activity.
關鍵字(中) ★ 奈米鈀觸媒
★ 二氧化矽
★ 液相氫化反應
★ 對氯硝基苯
★ 對氯苯胺
關鍵字(英) ★ Palladium catalyst
★ SiO2
★ liquid-phase hydrogenation
★ chloronitrobenzene
★ chloroaniline
論文目次 中文摘要 i
Abstract ii
Table of Contents iv
List of Tables vi
List of Figures vii
List of Schemes ix
Chapter 1 Introduction 1
1.1 Palladium catalyst 1
1.2 Preparation method 3
1.2.1 Impregnation 3
1.2.2 Precipitation methods 6
1.2.3 Co-precipitation method 7
1.3 Hydrogenation 7
1.3.1 Liquid phase hydrogenation of p-chloronitrobenzene 8
1.4 Objectives 12
Chapter 2 Experimental 13
2.1 Materials 13
2.2 Preparation of catalysts 13
2.2.1 Preparation of supports 13
2.2.2 Preparation of Pd/SiO2 14
2.2.3 Preparation of M-Pd/SiO2 14
2.3 Characterization of catalysts 14
2.3.1 X-ray diffraction (XRD) 14
2.3.2 Transmission electron microscopy (TEM) 15
2.3.3 High-resolution transmission electron microscopy (HRTEM) and energy 16
2.3.4 X-ray photoelectron spectroscopy (XPS) 17
2.4 Reaction test 18
Chapter 3 Hydrogenation of p-Chloronitrobenzene on Pd/SiO2 catalysts 21
3.1 Introduction 21
3.2 Results and discussion 21
3.2.1 XRD 21
3.2.2 TEM 22
3.2.3 HRTEM 24
3.2.4 Reaction Test 25
3.2.5 Kinetic study 28
3.3 Conclusion 29
Chapter 4 Hydrogenation of p-chloronitrobenzene on M-Pd/SiO2 catalysts 31
4.1 Introduction 31
4.2 Results and discussion 31
4.2.1 XRD 31
4.2.2 TEM 32
4.2.3 HRTEM and EDS 35
4.2.4 XPS 38
4.2.5 Reaction test 43
4.2.6 Kinetic study 47
4.3 Conclusion 48
Chapter 5 Summary 49
References 51
參考文獻 Barrabés, N., J. Just., A. Dafinov., F. Medina., J.L.G, Fierro., J.E, Sueiras., P. Salagre., Y. Cesteros., “Catalytic reduction of nitrate on Pt-Cu and Pd-Cu on active carbon using continuous reactor: The effect of copper nanoparticles”, Appl. Catal. B: Env. 62 (2006) 77-85.

Batista, J., A. Pintar., D. Mandrino., M. Jenko., V. Martin., “XPS and TPR examinations of γ-alumina-supported Pd-Cu catalysts”, Appl. Catal. A: Gen. 206 (2001) 113-124.

Blaser, H. U., A. Indolese., A. Schnyder., H. Steiner., M. Studer., “Supported palladium catalysts for fine chemicals synthesis”. J. Mol. Catal. A: Chem. 173 (2001) 3-18.

Cárdenas-Lizana, F., S. Gómez-Quero., N. Perret., M. A. Keane., “Support effects in the selective gas phase hydrogenation ofp-chloronitrobenzene over gold”. Gold Bulletin 42 (2009) 124-132.

Cárdenas-Lizana, F., Y. Hao., M. Crespo-Quesada., I. Yuranov., X.Wang., M. A. Keane., L. Kiwi-Minsker., “Selective Gas Phase Hydrogenation of p-Chloronitrobenzene over Pd Catalysts: Role of the Support”. ACS Catal. 3(2013) 1386-1396.

Chen, Y. Z., Chen, Y. C., “Hydrogenation of para-chloronitrobenzene over nickel borides”. Appl. Catal., A 115 (1994) 45.

Chen, Y.W., D.S. Lee., “Liquid phase hydrogenation of p-chlornitrobenzene on Au-Pd/TiO2 catalyst: effects of reduction methods”. MRC 2 (2013) 25-34.

Coq, B., Tijani, A. and Figueras, F., “Influence of alloying platinum for the hydrogenation of p-chloronitrobenzene over PtM/Al2O3 catalysts with M=Sn, Pb, Ge, Al, Zn,” J. Mol. Catal. 71 (1992) 317.

Coq, B., Tijani, A., Dutartre, R. and Figueras, F., “Influence of support and metallic precursor on the hydrogenation of p-chloronitrobenzene over supported platinum catalysts,” J. Mol. Catal. 79 (1993) 253.

Coq, Bernard., François, Figueras., “Bimetallic palladium catalysts: influence of the co-metal on the catalyst performance”. J. Mol. Catal. A: Chem. 173 (2001) 117-134.

Epron, F., F. Gauthard., C. Pinéda., J. Barbier., “Catalytic Reduction of Nitrate and Nitrite on Pt–Cu/Al2O3 Catalysts in Aqueous Solution: Role of the Interaction between Copper and Platinum in the Reaction”. J. Catal. 198 (2001) 309-318.

Fernández-García, M., J. A. Anderson., G. L. Haller., “Alloy Formation and Stability in Pd−Cu Bimetallic Catalysts”. J. Phys. Chem. 100 (1996) 16247-16254.

Ferrando, R., J. Jellinek., R. L. Johnston., “Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles”. Chem. Rev. 108 (2008) 845-910.

Gao Y., F. Wang., S. Liao., D. Yu., “Selective hydrogenation of nitrobenzene top-Aminophenol by the polymer-supported palladium-based mono- and bimetallic catalyst”. React. Kinet. Catal. Lett. 64 (1998) 351-357.

Gao, W., N. Guan., J. Chen., X. Guan., R. Jin., H. Zeng., Z. Liu., F. Zhang., “Titania supported Pd-Cu bimetallic catalyst for the reduction of nitrate in drinking water”. Appl.Catal. B: Env. 46 (2003) 341-351.

Han X., R. Zhou., G. Lai., B. Yue., X. Zheng., “Effect of transition metal (Cr, Mn, Fe, Co, Ni and Cu) on the hydrogenation properties of chloronitrobenzene over Pt/TiO2 catalysts”. J. Mol. Catal. A: Chem. 209 (2006) 83-87.

Han X.X., Zhou, R.X., Lai, G.H. and Zheng, X.M., “Influence of support and transition metal (Cr, Mn, Fe, Co, Ni and Cu) on the hydrogenation of p-chloronitrobenzene over supported platinum catalysts”, Catal. Today 433 (2004) 93-95.

Han X.X., Zhou, R.X., Lai, G.H., Yue, B.H. and Zheng, X.M., “Effect of transition metal (Cr, Mn, Fe, Co, Ni and Cu) on the hydrogenation properties of chloronitrobenzene over Pt/TiO2 catalysts”, J. Mol. Catal. A: Chem. 209 (2004) 83.

Han X.X., Zhou, R.X., Zheng, X.M. and Jiang, H., “Effect of rare earths on the hydrogenation properties of p-chloronitrobenzene over polymer-anchored platinum catalysts”. J. Mol. Catal. 193 (2003) 103.

Khilnani, V. L., S. B. Chandalia., “Selective Hydrogenation. I. para-Chloronitrobenzene to para-Chloroaniline Platinum on Carbon As Catalyst”. Org. Proc. Res. Dev. 5 (2001) 257-262.
Li, H., Zhang, J. and Li, H.X., “Ultrasound-assisted preparation of a novel Ni-B amorphous catalyst in uniform nanoparticles for p-chloronitrobenzene hydrogenation”. Catal. Comm. 8 (2007) 2211.

Li, H., Zhao, Q.F. and Li, H.X., “Selective hydrogenation of p-chloronitrobenzene over Ni-P-B amorphous catalyst and synergistic promoting effect of B and P”. J. Mol. Catal. A: Chem. 285 (2008) 29.

Liu, M., Yu, W., Liu, H. and Zheng, J., “Preparation and characterization of polymer-Stabilized ruthenium–platinum and ruthenium–palladium bimetallic Colloids and their catalytic properties for hydrogenation of o-chloronitrobenzene”. J. Colloid Interface Sci. 214 (1999) 231.

Liu, M.H., Yu, W.Y. and Liu, H.F., “Selective hydrogenation of o-chloronitrobenzene over polymer-stabilized ruthenium colloidal catalysts”. J. Mol. Catal. A: Chem. 138 (1999) 295.

Liu, Y.C., C.Y. Huang., and Y.W. Chen,. “Liquid-Phase Selective Hydrogenation of p-Chloronitrobenzene on Ni−P−B Nanocatalysts”. Ind. Eng. Chem. Res. 45 (2006) 62–69
Mélendrez.R., G. Del Angel., V. Bertina., M.A. Valenzuelab., J. Barbierc., “Selective hydrogenation of carvone and o-xylene on Pd–Cu catalysts prepared by surface redox reaction”. J. Mol. Catal. A: Chem. 157 (2000) 143-149.

Ning, J., J. Xu., J. Liu, H. Miao., H. Ma., C. Chen., X. Li., L. Zhou., W. Yu., “A remarkable promoting effect of water addition on selective hydrogenation of p-chloronitrobenzene in ethanol”. Catal. Commun. 8 (2007) 1763-1766.

Pinna F., “Supported metal catalysts preparation”. Catal. Today 41 (1998) 129-137.
Rao G. Ranga., B. G. Mishra., “Al-pillared clay supported CuPd catalysts for nitrate reduction”. J Porous Mater 14 (2007) 205-212.

Sá, J.., S.Gross., H. Vinek., “Effect of the reducing step on the properties of Pd-Cu bimetallic catalysts used for denitration”. Appl. Catal. A : Gen. 294 (2005) 226-234.

Semagina, N., A. Renken., L. Kiwi-Minsker., “Palladium Nanoparticle Size Effect in 1-Hexyne Selective Hydrogenation”. J. Phys. Chem. C 111 (2007) 13933-13937.


Stanislausa A., B. H. Cooper., “Aromatic Hydrogenation Catalysis: A Review”. Catal. Rev. 36 (1994) 75-123.

Tijani, A., Coq, B. and Figueras, F., “Hydrogenation of para-chloronitrobenzene over supported ruthenium-based catalysts”. Appl. Catal. 76 (1991) 255.

Tijani, A., Coq, B. and Figuéras, F., “Pt/γ-Al2O3 catalytic membranes vs. Pt on γ-Al2O3 powders in the selective hydrogenation of p-chloronitrobenzene”. J. Mol. Catal. 68 (1991) 331.

Wilson Orla M., Marc R. Knecht., Joaquin C. Garcia-Martinez., Richard M. Crooks., “Effect of Pd Nanoparticle Size on the Catalytic Hydrogenation of Allyl Alcohol”. J. AM. CHEM. SOC.128 (2006) 4510-4511.

Xu Q., X. M. Liu., J. R. Chen., R. X. Li., X. J. Li., “Modification mechanism of Sn4+ for hydrogenation of p-chloronitrobenzene over PVP-Pd/γ-Al2O3”. J. Mol. Catal. A: Chem. 260 (2006) 299-305.

Yan, X., Liu, M., Liu, H. and Liew, K.Y., “Role of boron species in the hydrogenation of o-chloronitrobenzene over polymer-stabilized ruthenium colloidal catalysts”. J. Mol. Catal. A: Chem. 169 (2001) 225-233.

Yan, X.H., Sun, J.Q., Wang, Y.W. and Yang, J.F., “A Fe-promoted Ni-P amorphous alloy catalyst (Ni-Fe-P) for liquid phase hydrogenation of m- and p-chloronitrobenzene”. J. Mol. Catal. A: Chem 252 (2006) 17.

Yan, X.H., Sun, J.Q., Xu, Y.H. and Yang, J.F., “Liquid-phase hydrogenation of chloronitrobenzene to chloroaniline over Ni-Co-B Amorphous Catalyst”, Chin. J. Catal. 27 (2006) 119.

Yu, Z., S. Liao., Y. Xu., B. Yang., D. Yu., “A remarkable synergic effect of polymer-anchored bimetallic palladium–ruthenium catalysts in the selective hydrogenation of p-chloronitrobenzene”. J. Chem. Soc., Chem. Commun. (1995) 1155-1156.

Yoshinaga, Y., T. Akita., I. Mikami., T. Okuhara., “Hydrogenation of Nitrate in Water to Nitrogen over Pd–Cu Supported on Active Carbon”. J. Catal. 207 (2002) 37-45.

Zhang, F., S. Miao., Y. Yang., X. Zhang., J. Chen., N. Guan., “Size-Dependent Hydrogenation Selectivity of Nitrate on Pd−Cu/TiO2 Catalysts”. J. Phys. Chem. C 112 (2008) 7665-7671.
Anderson, James A., Supported Metals in Catalysis., World Scientific., Singapore, 2011.
指導教授 陳郁文(Yu-wen Chen) 審核日期 2015-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明