參考文獻 |
參考文獻
[1] Renard, Vincent T., et al. "Catalyst preparation for CMOS-compatible silicon nanowire synthesis." Nature nanotechnology 4.10 (2009): 654-657.
[2] Wu, Yue, et al. "Controlled growth and structures of molecular-scale silicon nanowires." Nano Letters 4.3 (2004): 433-436.
[3] Wu, Yue, et al. "Controlled growth and structures of molecular-scale silicon nanowires." Nano Letters 4.3 (2004): 433-436.
[4] D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel. Control of Thickness and Orientation of Solution-Grown Silicon Nanowires. Science, 2000, 287(5457): 1471-1473.
[5] Heitsch, Andrew T., et al. "solution−liquid−solid (SLS) growth of silicon nanowires." Journal of the American Chemical Society 130.16 (2008): 5436-5437.
[6] Juhasz, Robert, Niklas Elfström, and Jan Linnros. "Controlled fabrication of silicon nanowires by electron beam lithography and electrochemical size reduction." Nano letters 5.2 (2005): 275-280.
[7] Tong, Hien Duy, et al. "Novel top-down wafer-scale fabrication of single crystal silicon nanowires." Nano letters 9.3 (2009): 1015-1022.
[8] Garnett, Erik, and Peidong Yang. "Light trapping in silicon nanowire solar cells." Nano letters 10.3 (2010): 1082-1087.
[9] Peng, Kui-Qing, et al. "Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry." Advanced Materials 14.16 (2002): 1164.
[10] Choi, W. K., et al. "Synthesis of silicon nanowires and nanofin arrays using interference lithography and catalytic etching." Nano letters 8.11 (2008): 3799-3802.
[11] Wagner, R. S., and W. C. Ellis. "Vapor‐liquid‐solid mechanism of single crystal growth." Applied Physics Letters (1964): 89-90.
[12] Schmidt, V., J. V. Wittemann, and U. Gosele. "Growth, thermodynamics, and electrical properties of silicon nanowires†." Chemical reviews 110.1 (2010): 361-388.
[13] Hannon, J. B., et al. "The influence of the surface migration of gold on the growth of silicon nanowires." Nature 440.7080 (2006): 69-71.
[14] Arbiol, Jordi, et al. "Influence of Cu as a catalyst on the properties of silicon nanowires synthesized by the vapour–solid–solid mechanism."Nanotechnology 18.30 (2007): 305606.
[15] Wacaser, Brent A., et al. "Growth system, structure, and doping of aluminum-seeded epitaxial silicon nanowires." Nano letters 9.9 (2009): 3296-3301.
[16] Garnett, Erik C., Wenjie Liang, and Peidong Yang. "Growth and Electrical Characteristics of Platinum‐Nanoparticle‐Catalyzed Silicon Nanowires."Advanced Materials 19.19 (2007): 2946-2950.
[17] Kayes, Brendan M., et al. "Growth of vertically aligned Si wire arrays over large areas (> 1cm2) with Au and Cu catalysts." Applied Physics Letters91.10 (2007): 103110.
[18] Shimizu, Tomohiro, et al. "Synthesis of Vertical High‐Density Epitaxial Si (100) Nanowire Arrays on a Si (100) Substrate Using an Anodic Aluminum Oxide Template." Advanced Materials 19.7 (2007): 917-920.
[19] Zhang, Zhang, et al. "Ordered High‐Density Si [100] Nanowire Arrays Epitaxially Grown by Bottom Imprint Method." Advanced Materials 21.27 (2009): 2824-2828.
[20] Dimova-Malinovska, D., et al. "Preparation of thin porous silicon layers by stain etching." Thin Solid Films 297.1 (1997): 9-12.
[21] Li, X., and P. W. Bohn. "Metal-assisted chemical etching in HF/H 2 O 2 produces porous silicon." Applied Physics Letters 77.16 (2000): 2572-2574.
[22] Peng, Kuiqing, et al. "Motility of metal nanoparticles in silicon and induced anisotropic silicon etching." Advanced Functional Materials 18.19 (2008): 3026-3035.
[23] Huang, Zhipeng, Hui Fang, and Jing Zhu. "Fabrication of silicon nanowire arrays with controlled diameter, length, and density." Advanced materials19.5 (2007): 744-748.
[24] Huang, Zhipeng, et al. "Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching." Nano letters 8.9 (2008): 3046-3051.
[25] Huang, Zhipeng, et al. "Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred< 100> etching directions." Nano letters 9.7 (2009): 2519-2525.
[26] Huang, Zhipeng, et al. "Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon." The Journal of Physical Chemistry C 114.24 (2010): 10683-10690.
[27] Huang, Zhipeng, et al. "Metal‐assisted chemical etching of silicon: a review." Advanced materials 23.2 (2011): 285-308.
[28] Uhlir, A. "Electrolytic shaping of germanium and silicon." Bell System Technical Journal 35.2 (1956): 333-347.
[29] Fuller, C. S., and J. A. Ditzenberger. "Diffusion of donor and acceptor elements in silicon." Journal of Applied Physics 27.5 (1956): 544-553.
[30] Turner, Dennis R. "Electropolishing silicon in hydrofluoric acid solutions."Journal of the electrochemical Society 105.7 (1958): 402-408.
[31] Archer, R. J. "Stain films on silicon." Journal of Physics and Chemistry of Solids 14 (1960): 104-110.
[32] Watanabe, Y., and T. Sakai. "Application of a thick anode film to semiconductor devices." Review of The Electrical Communications Laboratories 19.7-8 (1971): 899.
[33] Watanabe, Y., et al. "Formation and properties of porous silicon and its application." Journal of the Electrochemical Society 122.10 (1975): 1351-1355.
[34] Beale, M. I. J., et al. "An experimental and theoretical study of the formation and microstructure of porous silicon." Journal of Crystal Growth 73.3 (1985): 622-636.
[35] Beale, M. I. J., et al. "Microstructure and formation mechanism of porous silicon." Applied Physics Letters 46.1 (1985): 86-88.
[36] Smith, R. L., S-F. Chuang, and S. D. Collins. "A theoretical model of the formation morphologies of porous silicon." Journal of Electronic Materials17.6 (1988): 533-541.
[37] Smith, R. L., and S. D. Collins. "Generalized model for the diffusion-limited aggregation and Eden models of cluster growth." Physical Review A 39.10 (1989): 5409.
[38] Smith, R. L., and S. D. Collins. "Porous silicon formation mechanisms."Journal of Applied Physics 71.8 (1992): R1-R22.
[39] Witten, TA T., and L. M. Sander. "Diffusion-limited aggregation." Physical Review B 27.9 (1983): 5686.
[40] Read, A. J., et al. "First-principles calculations of the electronic properties of silicon quantum wires." Physical review letters 69.8 (1992): 1232.
[41] Sanders, G. D., and Yia-Chung Chang. "Theory of optical properties of quantum wires in porous silicon." Physical Review B 45.16 (1992): 9202.
[42] Lehmann, V., and Ulrich Gösele. "Porous silicon formation: A quantum wire effect." Applied Physics Letters 58.8 (1991): 856-858.
[43] Smith, Zachary R., Rosemary L. Smith, and Scott D. Collins. "Mechanism of nanowire formation in metal assisted chemical etching." Electrochimica Acta92 (2013): 139-147.
[44] Brock, Stephanie L. "Nanostructures and Nanomaterials: Synthesis, Properties and Applications By Guozhang Cao (University of Washington). Imperial College Press (distributed by World Scientific): London. 2004. xiv+ 434 pp. $78.00. ISBN 1-86094-415-9." Journal of the American Chemical Society 126.44 (2004): 14679-14679.
|