博碩士論文 90226029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.145.166.7
姓名 李宗憲(Tsung-Xian Lee)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 透鏡光纖的光學模型與耦合效率之研究
(The Study of Optical Modeling and Coupling Efficiency for Lensed-Fiber)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 結合柱狀透鏡陣列之非成像車頭燈光型設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
★ 二位元隨機編碼之全像光學鎖之研究★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究
★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文成功地建立了透鏡光纖的光學模型並提出新架構的透鏡光纖可用在雷射光與單模光纖的光學耦合上。在論文中,首先分別討論了雷射二極體和單模光纖的光學特性與其橫向模態的計算。其次,在理論分析方面,我們利用了近軸高斯光束傳輸來模擬透鏡光纖在自由空間中的模態分佈,並且使用Fresnel繞射來修正離軸效應所產生的誤差。我們由以上的理論計算分析了幾款透鏡光纖,包含其耦合效率和對光容忍度的分析,最後提出新的透鏡光纖架構,二段式透鏡光纖,其工作距離大於100微米,且耦合效率達50%以上。
摘要(英) A new lensed-fiber with two different rods of a spherical end is proposed. The lens geometry and
refractive index are changed to obtain various working distance and spot size. We analyze the characteristic of lensed-fiber, and demonstrate a lensed-fiber with high coupling efficiency of around 50% and with working distance longer than 100um.
關鍵字(中) ★ 耦合效率
★ 透鏡光纖
關鍵字(英) ★ Coupling Efficiency
★ Lensed-Fiber
論文目次 第一章緒論…………………………………………………………. 1
1.1 光纖耦合技術...…………………………………………….. 1
1.2 透鏡光纖的發展與耦合特性….………………...…………. 3
1.3 透鏡光纖的模擬方法………………………………………. 6
1.4 論文大綱與架構……………….…………………………… 8
第二章耦光元件特性........................................................................ 9
2.1 雷射二極體特性………………………..…………………... 9
2.1.1 基本構造…………...………………………………..…. 9
2.1.2 矩形波導模態……………………………………..…… 13
2.1.3 雷射光束之空間分佈特性………………………..…… 20
2.2 光纖特性……………..……………………………………... 23
2.2.1 圓柱形波導模態………………………………………. 24
2.2.2 單模光纖特性…..……………………………………… 28
第三章理論計算….…………………………………………………. 31
3.1 高斯光束傳輸……………………………………………....... 31
3.1.1 高斯光束之基本特性…………………………………… 31
3.1.2 近軸高斯光束傳輸……………………………………… 35
3.2 Fresnel 繞射………..………………………………………….. 36
3.3 耦合效率分析………………………………………………... 39
第四章透鏡光纖的模擬與分析.…………..……………..………… 44
4.1 光學模型建立………..………………………………………. 44
4.2 薄透鏡光纖分析……………………………………………... 47
4.3 厚透鏡光纖分析…………...………………………………… 54
4.4 二段式透鏡光纖……………………………………………... 61
4.5 耦合效率分析........................................................................... 65
第五章結論…………………………………………………………. 72
參考文獻……………………………………………………………... 74
中英文名詞對照表…………………………………………………... 77
參考文獻 [1] M. Saruwatari, K. Nawata, “Semiconductor Laser to Single-Mode Fiber
Coupler,” Appl. Opt. 18, 1847-1856 (1979).
[2] R. E. Wagner and W. J. Tomlinson, “Coupling Efficiency of Optics in
Single-Mode Fiber Components,” Appl. Opt. 21, 2671-2688 (1982).
[3] J. Yamada, Y. Murakami, J. Sakai, T. Kimura, “Characteristics of a
Hemisphe, rical Microlens for Coupling between a Semiconductor Laser and
Single-Mode Fiber,” IEEE J. Quantum Electron. QE-16, 1067-1072 (1980).
[4] I. Moerman, P. P. Van Daele, P. M. Demeester, “A Review on Fabrication
Technologies for the Monolithic Integration of Tapers with III-V
Semiconductor Devices,” IEEE J. Selected Topics in Quantum Electronics 3,
1308-1320 (1997).
[5] O. Mitomi, K. Kasaya, Y. Tohmori, Y. Suzaki, H. Fukano, Y. Sakai, M.
Okamoto, S. Matsumoto, “Optical Spot-Size Converters for Low-Loss Coupling
between Fibers and Optoelectronic Semiconductor Devices,” J. Lightwave
Technol. 14, 1714-1720 (1996).
[6] K. Shiraishi, “New Scheme of Coupling from Laser Diode to Single-Mode
Fiber: A Beam Expanding Fiber with a Hemispherical End,” Opt. Lett. 39,
3469-3467 (1990).
[7] K. Shiraishi, N. Oyama, K. Matsumura, I. Ohishi, S. Suga, “A Fiber with a
Long Working Distance for Integrated Coupling Between Laser Diode and
Single-Mode Fibers,” J. Lightwave Technol. 13, 1736-1744 (1995).
[8] K. Shiraishi, H. Ohnuki, N. Hiraguri, K. Matsumura, I. Ohishi, H. Morichi,
H. Kazami, “A Lensed-Fiber Coupling Scheme Utilizing a Graded-Index Fiber
Coreless Fiber Tip,” J. Lightwave Technol. 15, 356-363 (1997).
[9] K. Shiraishi, S. Kuroo, “A New Lensed-Fiber Configuration Employing
Cascade GI-Fiber Chips,” J. Lightwave Technol. 18, 787-794 (2000).
[10] G. Kweon, I Park, J Shim, “Laser-to-Fiber Optical Coupling Scheme with a
Long Working Distance by use of Thermally overexpanded fiber, “ Appl.
Opt. 37,4789-4796 (1998).
[11] W. T. Chen and L. A. Wang, “Laser-to-Fiber Coupling Scheme by Utilizing a
Lensed Fiber Integrated with a Long-Period Fiber Grating,” IEEE Photon.
Technol. Lett. 12, 501-503 (2000).
[12] L. A. Reith, W. Mann, G. R. Lalk, R. R. Krchnavek, N. C.Andreadakis, C.
Zah, “Relaxed-Tolerance Optoelectronic Device Packaging,” J. Lightwave
Technol. 9, 477-484 (1991).
[13] W. B. Joyce and B. C. Deloach, “Alignment-Tolerant Optical-Fiber Tips for
Laser Transmitters,” J. Lightwave Technol. 3, 755-757 (1985).
[14] L. G. Cohen and M. V. Schneider, “Microlenses for Coupling Junction Laser
to Optical Fibers,” Appl. Opt. 13, 89-94 (1974).
[15] H. Kuwahara, M. Sasaki, N. Tokoyo, “Efficient Coupling From Semiconductor
Laser into Single-Mode Fibers with Tapered Hemispherical Ends,” Appl.
Opt. 19, 2578-2583 (1980).
[16] V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, W. C. Young,
“Efficient Power Coupling from a 980nm, Broad-Area Laser to a Single-Mode
Fiber Using a Wedge-Shaped Fiber Endface,” J. Lightwave Technol. 8, 1313-
1318 (1990).
[17] C. A. Edwards, H. M. Presby, C. Dragone, “Ideal Microlenses for Laser to
Fiber Coupling,” J. Lightwave Technol. 11, 252-257 (1993).
[18] W. Bludau, R. Rossberg, “ Low-Loss Laser-to-Fiber Coupling with
Negligible Optical Feedback,” J. Lightwave Technol. LT-3, 294-302 (1985).
[19] B. Hillerich, “Shape Analysis and Coupling Loss of Microlenses on Single-
Mode Fiber Tips,” Appl. Opt. 27, 3102-3106 (1988).
[20] K. S. Lee and F. S. Barnes, “Microlenses on the end of Single-Mode
Optical Fiber for Laser Applications,” Appl. Opt. 24, 3134-3139 (1985).
[21] B. Hillerich and J. Guttmann, “Deteriortion of Taper Lens Performance due
to Taper Asymmetry,” J. Lightwave Technol. 7, 99-104 (1989).
[22] L. D. Dickson,” Characteristics of a Propagating Gaussian Beam,” Appl.
Opt. 9, 1854-1861 (1970).
[23] D. A. Holmes, J. E. Korka, P. V. Avizonis, “Parametric Study of Apertured
Focused Gaussian Beams,” Appl. Opt. 11, 565-574(1972).
[24] A. Yoshida, “Spherical Aberration in Beam Optical Systems,” Appl. Opt.
21, 1812-1816 (1982).
[25] K. S. Lee, “Focusing Characteristics of a Truncated and Aberrated
Gaussian Beam through a Hemispherical Microlens,” Appl. Opt. 25, 3671-
3676 (1986).
[26] W. B. Joyce and B. C. Deloach, “Alignment of Gaussian Beams,” Appl. Opt.
23, 4187-4196 (1984).
[27] D. P. Clement and U. österberg, “Laser Diode to Single Mode Fiber
Coupling Using an Out-of-Plane Misalignment Modal,” Opt. Eng. 34, 63-47
(1995).
[28] L. A. Wang and C. D. Su, “Tolerance Analysis of Aligning an Astigmatic
Laser Diode with a Single-Mode Optical Fiber,” J. Lightwave Technol. 14,
2757-2762 (1996).
[29] W. T. Chen, L. A. Wang, “Out-of-Plane Optical Coupling between an
Elliptical Gaussian Beam and an Angled Sing-Mode Fiber,” J. Lightwave
Technol. 16, 1589-1595 (1998).
[30] J. W. Goodman, Introduction to Fourier Optics, McGraw Hill, New York
(1996).
[31] G. P. Agrawal and N. K. Dutta, Semiconductor Laser, Van Nostrand Reinhold,
New York (1993).
[32] G. P. Agrawal, Fiber-Optic Communication Systems, John Wiley & Sons, New
York (1993).
[33] A. Yariv and P. Yeh, Optical wave in crystal, wiely, New York (1984).
[34] http://www.corning.com/
指導教授 孫慶成(Ching-Cherng Sun) 審核日期 2003-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明