博碩士論文 963403032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.227.107.109
姓名 李宜勳(Yi-hsun Lee)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 行星式運動結合二維振動輔助磁力研磨設備開發與應用
(Development and Implementation of Equipment on Planetary Motion Combined with Two-Dimensional Vibration-Assisted Magnetic Abrasive Finishing)
相關論文
★ 運用化學機械拋光法於玻璃基板表面拋光之研究★ 電泳沉積輔助竹碳拋光效果之研究
★ 凹形球面微電極與異形微孔的成形技術研究★ 運用電泳沉積法於不鏽鋼鏡面拋光之研究
★ 電化學結合電泳精密拋光不銹鋼之研究★ 純水中的電解現象分析與大電流放電加工特性研究
★ 結合電化學與電泳沉積之微孔複合加工研究★ 放電加工表面改質與精修效果之研究
★ 汽車熱交換器用Al-Mn系合金製程中分散相演化及再結晶行為之研究★ 磁場輔助微電化學銑削加工特性之研究
★ 磁場輔助微電化學鑽孔加工特性之研究★ 微結構電化學加工底部R角之改善策略分析與實做研究
★ 加工液中添加Al-Cr混合粉末對工具鋼放電加工特性之影響★ 不同加工液(煤油、蒸餾水、混合液)對鈦合金(Ti-6Al-4V)放電加工特性之影響
★ 放電與超音波振動複合加工添加TiC及SiC粉末對Al-Zn-Mg系合金加工特性之影響★ 添加石墨粉末之快速穿孔放電加工特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以自行開發的新型磁力研磨法為研究主軸,應用行星式運動結合二維振動輔助磁力研磨(PM-2DVAMAF)的機制於不鏽鋼材料上進行拋光。
首先探討二維振動輔助對於MAF的影響,以及針對各加工參數的特性進行研究。結果顯示,二維振動輔助磁力研磨(2D VAMAF)的機制可以使工件的表面與磁極的旋轉加工方向形成緻密的交叉加工痕跡,因此可以提高研磨效率與精度。實驗證明,振動輔助磁力研磨加工在最適參數組合下,能於5分鐘內有效改善不鏽鋼表面粗糙度由Ra 0.13μm改善至0.03μm,改善率達77%。
進一步利用行星式運動結合二維振動輔助磁力研磨,其主要目的是利用行星齒輪機構自轉與公轉的特點,結合二維振動輔助,使工件表面形成高密度的交叉紋路。結果顯示,在最適當的參數組合下,能於12.5分鐘內有效改善不銹鋼表面粗糙度由Ra0.16μm降低至0.032μm,改善率為80%。
最後探討二維振動輔助磁力研磨配合羊毛氈拋光墊,對於不鏽鋼表面粗糙度改善之情況。結果顯示,在最適當的參數組合下能在5分鐘內有效改善不銹鋼表面粗糙度由Ra0.14μm降低至0.03μm,改善率為78.57%。
摘要(英) This study develops a new surface polishing approach by combining planetary motion (PM) with two-dimensional vibration-assisted magnetic abrasive finishing (PM-2DVAMAF). Planetary motion involves both rotation and revolution, thus generating radial acceleration, which strengthens the normal force exerted on the workpiece surface, and in turn enhances the cutting power of the abrasives and their polishing performance.
First, investigate adding the two-dimensional vibration-assisted influence on the processing of MAF. From experimental results, 2D VAMAF can effectively increase the polishing efficiency of MAF and improve surface quality. In addition to MAF by steel particles and SiC abrasives, dense intersecting machining paths on the workpiece are also formed under vibration assistance, thus contributing to better polishing efficiency and precision. With 5-min 2D VAMAF under optimal parameter combination, the surface roughness of a stainless steel SUS304 workpiece can be reduced from 0.13 μm to 0.03 μm, an improvement of 77%.
Further discussion PM-2DVAMAF, PM results in uniform, intersecting and closely packed polishing paths, which contribute to better surface quality within a shorter processing time. Experimental results reveal that 12.5-min PM-2DVAMAF under optimal parameter combination can reduce surface roughness of a stainless steel SUS304 workpiece from 0.16 μm to 0.032 μm, an improvement of 80%.
關鍵字(中) ★ 磁力研磨 關鍵字(英) ★ MAF
論文目次 摘 要................................................................................................................i

Abstract.................................................................................................................ii

謝 誌.............................................................................................................. iii

目 錄.............................................................................................................. v

圖 目 錄...............................................................................................................x

表 目 錄............................................................................................................. xiii

第一章 緒論.........................................................................................................1
1-1 研究動機.................................................................................................1
1-2 文獻回顧.................................................................................................4
1-2-1探討探討振動結合磁力研磨文獻...............................................4
1-2-2探討各加工參數對表面粗糙度與材料移除率文獻...................5
1-2-3探討磁性複合液體文獻……………………………...................5
1-2-4探討磁力研磨複合加工法文獻……………………...................6
1-2-5探討磁極設計文獻.......................................................................6
1-2-6田口實驗計畫法……………………………………...................6
1-3 研究目的...............................................................................................9
1-4 本論文之構成.......................................................................................12
第二章 實驗原理...............................................................................................15
2-1 磁力研磨拋光之加工原理...................................................................15
2-2 磁性磨粒之切削加工機制...................................................................19
2-3 行星齒輪系……………………………………………….…………..20
2-4 田口品質工程…………………………………………….…………..21
2-4-1田口方法概述…………………………………………………21
2-4-2 實驗設計流程………………………………………………….21
2-4-3決定目標特性…………………………………………………23
2-4-4 直交陣列表……………………………………………………23
2-4-5 訊號/噪音比……………………………………………………24
2-4-6 變異數分析……………………………………………………25
2-4-7 驗證實驗……………………………………………………….26
第三章 二維振動輔助磁力研磨之設備開發與應用…………….………......27
3-1 前言.......................................................................................................27
3-2 實驗設備與方法...................................................................................29
3-2-1 實驗設備....................................................................................29
3-2-2 振動輔助機構設計....................................................................31
3-2-3 實驗材料與方法........................................................................32
3-3 結果與討論...........................................................................................36
3-3-1二維振動輔助對於磁力研磨的影響………………………….36
3-3-2 2D VAMAF的因子效果回應分析......................................... ...41
3-3-2-1田口正交實驗…………………………………………41
3-3-2-2變異數分析與F檢定………………………..………..42
3-3-3驗證實驗…………………………………….............................44
3-3-4加工參數對表面粗糙度的影響.................................................47
3-3-4-1 SiC粒徑對表面粗糙度的影響………..…...……..…47
3-3-4-2 加工間距對表面粗糙度的影響……….………… .…48
3-3-4-3 振動頻率對表面粗糙度的影響………………...… .....49
3-3-4-4 SiC重量對表面粗糙度的影響………...……….... …50
3-3-4-5 加工液重量對表面粗糙度的影響……………...……52
3-4 結論.......................................................................................................54
第四章 行星式運動結合二維振動的新型研磨法之研究...............................55
4-1 前言.......................................................................................................55
4-2 實驗設備與方法...................................................................................57
4-2-1 行星機構設計與開發................................................................57
4-2-2 PM-2DVAMAF及MAF的運動方式與軌跡........................ ..60
4-2-3實驗方法與材料.........................................................................63
4-3 結果與討論...........................................................................................65
4-3-1 PM-2DVAMAF最佳參數組合……...……......................…….65
4-3-1-1田口正交實驗…………………………………………65
4-3-1-2變異數分析與F檢定………………………..………..66
4-3-1-3驗證實驗………………………………………………68
4-3-2行星式二維振動輔助對於磁力研磨的影響……………..……72
4-3-3加工參數對於表面粗糙度的影響……………………….…… 73
4-3-3-1加工液重量對表面粗糙度的影響…………..………..73
4-3-3-2鋼砂重量對表面粗糙度的影響…………..…………..74
4-3-3-3鋼砂粒徑對表面粗糙度的影響…………..…………..76
4-3-3-4振動頻率對表面粗糙度的影響…………..…………..77
4-3-3-5振幅對表面粗糙度的影響…………..………………..78
4-3-3-6磁極轉速對表面粗糙度的影響…………..…………..79
4-4 結論.......................................................................................................81
第五章 應用可撓式磁力輔助拋光工具之二維振動研究…….……………..82
5-1 前言.......................................................................................................82
5-2 實驗設備與方法...................................................................................84
5-2-1 磁極鋼套形狀設計....................................................................84
5-2-2 實驗材料與方法........................................................................86
5-2-3 實驗步驟....................................................................................89
5-2-4 表面粗糙度之量測....................................................................89
5-3 結果與討論...........................................................................................90
5-3-1前置實驗......................................................................................90
5-3-1-1磁極間距對粗糙度的影響............................................90
5-3-1-2拋光墊對於表面形貌的影響........................................91
5-3-2實驗參數水準設計.......................................................................92
5-3-3實驗結果分析……………….......................................................95
5-3-3-1 振動輔助對磁力研磨的影響.......................................95
5-3-3-2 田口正交實驗……....................................................98
5-3-3-3 變異數分析及F檢定..................................................100
5-3-3-4 驗證實驗.................................................................... 102
5-3-4加工參數對表面粗糙度的影響..................................................104
5-3-4-1實驗條件與規劃..........................................................104
5-3-4-2振動平台X方向振動頻率對表面粗糙度的影響.....105
5-3-4-3 SiC重量對表面粗糙度的影響……………………...106
5-3-4-4鋼砂重量對表面粗糙度的影響……………………..107
5-3-4-5研磨液重量對表面粗糙度的影響..............................109
5-3-4-6振動平台轉速對表面粗糙度的影響..........................111
5-3-4-7振動平台振幅對表面粗糙度的影響..........................112
5-3-4-8鋼砂粒徑對表面粗糙度的影響..................................113
5-3-4-9磁極轉速對表面粗糙度的影響..................................114
5-3-4-10加工時間對表面粗糙度的影響................................116
5-4 結論......................................................................................................119
第六章 總結論.................................................................................................120
參考文獻...........................................................................................................122
參考文獻 1. S. Yin and T. Shinmura, “Vertical vibration-assisted magnetic abrasive finishing and deburring for magnesium alloy”, International Journal of Machine Tools & Manufacture, Vol. 44, NO.12-13, pp.1297-1303, 2004.
2. 鄒艷華,進村武男,“永久磁石と磁性粒子を利用した内面の磁気バリ取り技術の研究開発”,砥粒加工学会会誌, Vol. 51, No. 2, pp. 94-99, 2007。
3. 夏目勝之,進村武男,“振動方式磁気研磨加工における研磨速度の研磨特性に及ぼす効果”,砥粒加工学会会誌, Vol. 52, No. 9, pp. 531-536, 2008。
4. 藤田秀樹,進村武男,“軸方向振動方式による異形管内面の磁気援用加工法に関する研究-異なる磁性粒子の利用による角管内面および隅(コーナ)部の平滑化促進効果”,砥粒加工学会会誌, Vol. 52, No. 4, pp. 214-218, 2008。
5. I.T. Im, S.D. Mun and S.M. Oh, “Micro machining of an STS 304 bar by magnetic abrasive finishing”, Journal of Mechanical Science and Technology, Vol.23, pp.1982-1988, 2009.
6. V.K. Jain, P. Kumar, P.K. Behera and S.C. Jayswal, “Effect of working gap and circumferential speed on the performance of magnetic abrasive finishing process”, WEAR, Vol.250, NO.1-12, pp.384-390, 2001.
7. D. Wang, T. Shinmura, H. Yamaguchi, “Study of magnetic field assisted mechanochemical polishing process for inner surface of si3n4 ceramic components finishing characteristics under wet finishing using distilled water”, International Journal of Machine Tools & Manufacture, Vol.44, NO.14, pp.1547-1553, 2004.
8. Y. Wang and D.J. Hu, “Study on the inner surface finishing of tubing by magnetic abrasive finishing”, International Journal of Machine Tools & Manufacture, Vol.45, NO.1, pp.43-49, 2005.
9. J.D. Kim, I.H. Noh, “Magnetic polishing of three dimensional die and mold surfaces”, The International Journal of Advanced Manufacturing Technology, Vol.33, pp.18-23, 2007.
10. J.S. Kwak, “Enhanced magnetic abrasive polishing of non-ferrous metals utilizing a permanent magnet”, Journal of Machine Tools & Manufacture, Vol.49, pp.613-618, 2009.
11. D.K. Singh, V.K. Jain, V. Raghuram and R. Komanduri, “Analysis of surfacetexture generated by a flexible magnetic abrasive brush”, WEAR, Vol.259, pp.1254-1261, 2005.
12. B. Karpuschewski, O. Byelyayev, V.S. Maiboroda, “Magneto-abrasive machining for the mechanical preparation of high-speed steel twist drills”, CIRP Annals - Manufacturing Technology, 58, pp.295-298, 2009.
13. K. Shimada, Y. Wu and YC. Wong, “Effect of magnetic cluster and magnetic field on polishing using magnetic compound fluid”, Journal of Magnetism and Magnetic Materials, Vo.262, pp. 242-247, 2003.
14. K. Hanada, H. Yamaguchi and H. Zhou, “New spherical magnetic abrasives with carried diamond particles for internal finishing of capillary tubes”, Diamond and Related Materials, Vol.17, pp. 1434-1437, 2008.
15. T. Furuya, Y. Wu, M. Nomura, K. Shimada, K. Yamamoto, “Fundamental performance of magnetic compound fluid polishing liquid in contact-free polishing of metal surface” ,Journal of Materials Processing, Vol.201, pp. 536-541, 2008.
16. S. Singh, HS. Shan and P. Kumar, “Wear behavior of materials in magnetically assisted abrasive flow machining”, Journal of Materials Processing, Vol.128, pp. 155-161, 2002.
17. T. Shinmura, E. Hatano and K. Takazawa, “Development of Plane Magnetic Abrasive Finishing Apparatus and its Finishing Performance”, J. of JSPE(in Japanese), Vo1.52, pp.1080-1086, 1986.
18. 莊政儒,「磁力研磨法應用於方管內表面精磨之研究」,私立華梵大學,碩士論文,2002。
19. 林江龍,「放電加工電極消耗可靠度與製程參數最佳化研究」,國立中央大學機械工程學系博士論文,1999。
20. M.S. Phadke, “Quality engineering using robust design”, AT& T Laboratories 1989.
21. F.C. Khaw, B.S. Lim and L.E.N. Lim, “Optimal Design of Neural Networks Using the Taguchi Method”, Neurocomputing, Vol.7, pp.225-245, 1995.
22. W.H. Yang, Y.S. Tarng, “Design Optimization of Cutting Parameters for Turning Operations Based on the Taguchi Method”, Journal of Materials Processing Technology Vol.84, pp.122-129, 1998.
23. J.H. Lau, C. Chang, “Taguchi Design of Experiment for Wafer Bumping by Stencil Printing”, IEEE Transactions on Electronics Packaging Manufacturing, Vol.233, pp.219-225,2000.
24. A. Mertol, “Application of the Taguchi Method to Chip Scale Package (CSP) Design”, IEEE Transactions on Advanced Packaging, Vol.23, pp. 266–276, 2000.
25. G. Taguchi, “Taguchi Methods in LSI Fabrication Process”, IEEE International Workshop on 2001 6th, pp.1-6, 2001.
26. Y.S. Tarng, S.C. Juang and C.H. Chang, “The use of grey-based Taguchi methods to determine submerged arc welding process parameters in hard facing”, Journal of Materials Processing Technology, Vol.128, pp.1-6, 2002.
27. J.M. Liang, P.J. Wang,” Self-learning control for injection molding based on neural networks optimization”, Journal of Injection Molding Technology, Vol.6, pp.58-72, 2002.
28. J.A. Ghani, I.A. Choudhury and H.H. Hassan, “Application of Taguchi method in the optimization of end milling parameters”, Journal of Materials Processing Technology, Vol.145, pp. 84-92, 2004.
29. T. Shinmura, T. Aizawa, “Study on Internal Finishing of a Nonferromagnetic Tubing by Magnetic Abrasive Machining Process”, Bulletin of The Japan Society of Precision Engineering, Vol.23, pp.37-41, 1989.
30. 張榮顯,「磁力研磨加工應用於放電加工表面改善之研究」,國立中央大學,碩士論文,2001。
31. 黃孟祥,「磁氣研磨法於微細電極表面拋光技術之研究」,國立雲林科技大學,碩士論文,2000。
32. 李輝煌,田口方法-品質設計的原理與實務,三版,高立圖書有限公司,台北,2010。
33. J.Wu, Y.Zou and H,Sugiyama, “Study on ultra-precision magnetic abrasive finishing process using low frequency alternating magnetic alternating magnetic field”, Journal of Magnetism and Magnetic Materials, Vol.386, pp.50-59, 2015.
34. G.X. Zhang, Y.G. Zhao, D.B. Zhao, F.S. Yin and Z.D. Zhao, “Preparation of white alumina spherical composite magnetic abrasive by gas atomization and rapid solidification”, Scripta Materialia, Vol.65, pp.416-419,2011.
35. K.B. Judal, V. Yadava, “Modeling and simulation of cylindrical electro-chemical magnetic abrasive machining of AISI-420 magnetic steel”, Journal of Materials Processing Technology, Vol.213, pp.2089-2100, 2013.
36. H. Yamaguchi, J. Kang and F. Hashimoto, “Metastable austenitic stainless steel tool for magnetic abrasive finishing”, CIRP Annals-Manufacturing Technology, Vol.60, pp.339-342, 2011.
37. J.S. KWAK, “Mathematical model determination for improvement of surface roughness in magnetic-assisted abrasive polishing of nonferrous AISI316 material”, Trans. Nonferrous Met. Soc. China, Vol.22, pp.s845-s850, 2012.
38. H. Yamaguchi, A.K. Srivastava, M. Tan and F. Hashimoto, ” Magnetic Abrasive Finishing of cutting tools for high-speed machining of titanium alloys”, CIRP Journal of Manufacturing Science and Technology, Vol.7, pp.299-304, 2014.
39. J. Kang and H. Yamaguchi, “Internal finishing of capillary tubes by magnetic abrasive finishing using a multiple pole-tip system”, Precision Engineering, Vol.36, pp.510-516, 2012.
40. P. Kala and P.M. Pandey, “Experimental Study on Finishing Forces in Double Disk Magnetic Abrasive Finishing Process While Finishing Paramagnetic Workpiece”, Procedia Materials Science, Vol.5, pp.1677-1684, 2014.
41. P. Kala and P.M. Pandey, “Comparison of finishing characteristics of two paramagnetic materials using double disc magnetic abrasive finishing”, Journal of Manufacturing Processes, Vol.17, pp.63-77, 2015.
42. N. Sihag, P. Kala and P.M. Pandey, “Chemo Assisted Magnetic Abrasive Finishing-Experimental Investigations”, 12th Global Conference of Sustainable Manufacturing, Vol.26, pp.539-543, 2015.
43. J. Kang, A. George and H. Yamaguchi, “High-speed Internal Finishing of Capillary Tubes by Magnetic Abrasive Finishing”, 5th CIRP Conference on High Performance Cutting, Vol.1, pp.414-418, 2012.
44. G.Y. Liu, Z.N. Guo, S.Z. Jiang, N.S. Qu and Y.B. Li, “A Study of Processing Al 6061 with Electrochemical Magnetic Abrasive Finishing” 6th CIRP International Conference on High Performance Cutting, Vol.14, pp.234-238, 2014.
指導教授 顏炳華(Biing-hwa Yan) 審核日期 2015-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明