博碩士論文 102322063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:3.141.7.130
姓名 陳侃君(Kan-Jun Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 不同開口對風壓通風量之數值模擬
(Numerical Simulation of Wind-driven Ventilation for Buildings with Multiple Openings)
相關論文
★ 定剪力流中二維平板尾流之風洞實驗★ 以大渦紊流模式模擬不同流況對二維方柱尾流之影響
★ 矩形建築物高寬比對其周遭風場影響之研究★ 台灣地區風速機率分佈之研究
★ 邊界層中雙棟並排矩形建築之表面風壓量測★ 排放角度與邊牆效應對浮昇射流影響之實驗研究
★ 低層建築物表面風壓之實驗研究★ 圓柱體形建築物表面風壓之實驗研究
★ 最大熵值理論在紊流剪力流上之應用★ 應用遺傳演算法探討海洋放流管之優化方案
★ 均勻流中圓柱體形建築物表面風壓之風洞實驗★ 大氣與森林之間紊流流場之風洞實驗
★ 以歐氏-拉氏法模擬煙流粒子在建築物尾流區中的擴散★ 以HHT分析法研究陣風風場中建築物之表面風壓
★ 以HHT時頻分析法研究陣風風場中物體所受之風力★ 風吹落物之軌跡預測模式與實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 自然通風在建築物設計上是相當重要的課題之一,而窗戶的配置及風向對於風壓通風有著相當重要的影響。本研究採用計算流體動力學模式研究開口的配置對於室外風壓及通風量的影響,並利用積分法及通風模式計算通風量。主要探討的參數為風向角及開口的位置。結果顯示除了兩個開口放置在迎風面,其他的窗口配置會隨著風向角增大導致通風量變小。當窗口的配置導致剪力通風時,通風效果變差,在計算通風量時會有明顯的誤差。另一方面,三個窗口分別配置於建築三面外牆上的流況,利用積分法計算得之通風量遵守質量守恆定律與通風模式預測之值。本研究繪製之壓力分佈圖及速度分佈圖可幫助瞭解空氣在建築物室內室外之流動狀況。
摘要(英) This study used a three-dimensional Large Eddy Simulation (LES) model to investigate the influences of wind-driven ventilation of a cubic building with multiple openings. Five different configurations of openings are considered with three different wind directions. The ventilation rate Q through the building openings was calculated by two different methods. The first method is to integrate the predicted time-averaged velocities normal to the openings, another method is to substitute the predicted pressure coefficients Cp1 and Cp2 at the openings into a ventilation model. The results indicate that, the ventilation rates predicted by two different methods agree with each other when the openings were on different walls, but have large discrepancy when the openings were on the same wall. For buildings with three openings on three different external walls, the ventilation rates computed by the integration method satisfied the law of mass conservation, and agreed with the values predicted by the ventilation model. The simulated pressure distribution and velocity vectors around and inside the building can help us to understand the ventilation process.
關鍵字(中) ★ 自然通風
★ 風壓通風
★ 大渦模擬
★ 風向角
關鍵字(英) ★ Wind-driven cross ventilation
★ Computational Fluid Dynamics
★ Large Eddy Simulation
★ Wind direction
論文目次 Content
Abstract I
Content III
Notation.................................................................................................................... IV
Table captions V
Figure captions VI
1. Introduction 1
2. Numerical Model 2
3. Model Verification 4
4. Results and Discussion 6
4.1 Case A: One opening on windward, another opening on leeward 7
4.2 Case B: Openings on adjacent walls 7
4.3 Case C: Two openings on two opposite walls 8
4.4 Case D: Three openings on three different external walls 9
4.5 Case E: Two openings on the same wall 10
5. Conclusions 13
References 14
Table 16
Figure 23
參考文獻 [1] Allard F. Natural ventilation in buildings: a design handbook, James and James Ltd., London, England; 1998.
[2] Aynsley R. Estimating summer wind driven natural ventilation potential for indoor thermal comfort. J Wind Eng Ind Aerodyn 1999; 83:515-525.
[3] Linden PF. The fluid mechanics of natural ventilation. Annual Review of Fluid Mechanics 1999; 31:201-238.
[4] Etheridge D. Natural ventilation of buildings: Theory and measurement and design. John Wiley and Sons, Chichester, England, 2012.
[5] Awbi HB. Ventilation of Buildings. 2nd ed. Taylor and Francis, London, England, 2003.
[6] Etheridge D, Sandberg M. Building ventilation: Theory and Measurement. John Wiley and Sons, Chichester, England, 1996.
[7] Chu CR, Chiu YH, Chen YJ, Wang YW, Chou CP. Turbulence effects on the discharge coefficient and mean flow rate of wind-driven cross ventilation. Build Environ 2009; 44:2064-2072.
[8] Karava P, Stathopoulos T, Athienitis AK. Airflow assessment in cross-ventilated buildings with operable façade elements. Build Environ 2011; 46(1):266-279.
[9] Johnson MH, Zhai Z, Krarti M. Performance evaluation of network airflow models for natural ventilation. HVAC&R Research 2012; 18(3):349-365.
[10] Hu CH, Ohba M, Yoshie R. CFD modelling of unsteady cross ventilation flows using LES. J Wind Eng Ind Aerodyn 2008; 96 (10-11): 1692-1706.
[11] Chu, CR, Chen RH, Chen JW. A laboratory experiment of shear-induced ventilation. Energy and Buildings 2011; 43(10), 2631-2637.
[12] Evola G, Popov V. Computational analysis of wind driven natural ventilation in buildings. Energy Build 2006; 38: 491-501.
[13] Kato S, Murakami S, Mochida A, Akabashi S, Tominaga Y. Velocity-pressure field of cross-ventilation with open windows analyzed by wind tunnel and numerical simulation. J Wind Eng Ind Aerodyn 1992; 41-44: 2575-2586.
[14] Jiang Y, Chen Q. Effect of fluctuating wind direction on cross natural ventilation in buildings from large eddy simulation. Build Environ 2002; 37(4):379-386.
[15] Ramponi R, Blocken B. CFD simulation of cross-ventilation flow for different isolated building configurations: validation with wind tunnel measurements and analysis of physical and numerical diffusion effects. J Wind Eng Ind Aerodyn 2012; 104-106: 408-418.
[16] Tominaga Y, Mochida A, Yoshie R, Kataoka H, Nozu T, Masaru Y, Shirasawa T. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. J Wind Eng Ind Aerodyn 2008; 96:1749-1761.
[17] Ramponi R, Blocken B. CFD simulation of cross-ventilation for a generic isolated building: Impact of computational parameters. Build Environ 2012; 53:34-48.
[18] Chu CR, Chiang BF. Wind-driven cross ventilation with internal obstacles. Energy Build 2013; 67:201-209.
[19] Germano M, Piomelli U, Moin P, Cabot WH. A dynamic subgrid scale eddy viscosity model. Physics of Fluids A 1991; 3(7):1760-1765.
[20] Smagorinsky J. General circulation experiments with the primitive equations. I. The basic experiment. Monthly Weather Review 1963; 91(3):99-164.
[21] Chen Q. Ventilation performance prediction for buildings: A method overview and recent applications. Build Environ 2009; 44:848-858.
[22] Launder BE, Spalding DB. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering 1974; 3(2):269-289.
[23] Blocken B, Stathopoulos T, Carmeliet J. CFD simulation of the atmospheric boundary layer: wall function problem. Atmospheric Environment 2007; 41:238-252.
[24] Irtaza H, Beale RG, Godley MHR, Jameel A. Comparison of wind pressure measurements on Silsoe experimental building from full-scale observation, wind-tunnel experiments and various CFD techniques. International Journal of Engineering, Science and Technology 2013; 5(1):28-41.
[25] Feustel HE. COMIS-an international multizone air-flow and contaminant transport model. Energy Build 1999; 30:3-18.
指導教授 朱佳仁(Chia-Ren Chu) 審核日期 2015-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明