博碩士論文 100382004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:3.144.98.43
姓名 張皓鈞(Hao-chun Chang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 低放射性廢棄物最終處置場工程障壁材料於未飽和/飽和環境下之長期穩定性研究
相關論文
★ 電弧爐氧化碴特性及取代混凝土粗骨材之成效研究★ 路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討
★ 工業廢棄物再利用於營建工程粒料策略之研究★ 以鹼活化技術資源化電弧爐煉鋼還原碴之研究
★ 低放處置場工程障壁之溶出失鈣及劣化敏感度分析★ 以知識本體技術與探勘方法探討台北都會區道路工程與管理系統之研究
★ 電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究★ 三維有限元素應用於柔性鋪面之非線性分析
★ 放射性廢料處置場緩衝材料之力學性質★ 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究
★ 路基土壤受反覆載重作用之累積永久變形研究★ 還原碴取代部份水泥之研究
★ 路基土壤反覆載重下之回彈與塑性行為及模式建構★ 重載交通荷重對路面損壞分析模式之建立
★ 鹼活化電弧爐還原碴之水化反應特性★ 電弧爐氧化碴為混凝土骨材之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 低放射性廢棄物最終處置採多重障壁設施,由於處置場設計年限極長,處置場從施工階段至封閉後之服務期間,其近場環境的演化可能使障壁材料處於未飽和/飽和之狀態下,導致障壁材料性質發生變化,因此本研究藉由各種模擬試驗獲取本土化工程障壁於不同狀態下之參數,做為最終處置場設計之參考。
本研究以美國懷俄明州膨潤土混合不同比例台東硬頁岩,運用壓製方式製作純膨潤土或碎石與膨潤土混合物障壁材料,分別與依照ACI配比設計法設計的傳統混凝土(參考混凝土),以及添加鋼纖維的活性粉混凝土接觸,進行電滲加速試驗,以模擬處置場服務期間未飽和狀態下障壁材料之間的長期交互作用反應。接著對於處置場在未來是否遭遇到地下水入侵的情況,分別設計相關試驗,包括乾燥環境試驗、潮濕環境試驗、乾溼循環試驗和緩衝材料保水性試驗,模擬處置場長久未飽和狀態;而地下水入侵處置場,導致處置場達到飽和狀態的情形則是透過地下水滲透試驗來進行模擬,之後將各試驗完成後的混凝土試體以及緩衝材料試體切片分層進行分析比較,以探討處置場之近場環境對障壁材料性質的影響。
研究結果顯示,兩種未飽和工程障壁材料相互接觸經過電滲加速試驗後,混凝土中鈣離子將會釋出,這使得與其接觸的緩衝材料由接觸面開始,其鈣/鈉比升高、pH值降低;此外,障壁材料於長久未飽和狀況下若有相對濕度變化,則障壁材料內水份的散失或吸收將會造成重量、體積的變化,使材料的角隅剝落或表面開裂,添加台東硬頁岩碎石粒料有助於減少緩衝材料於乾溼循環中所造成的重量、體積變化量,但是台東硬頁岩為一具有鹼質粒料反應潛勢之礦物,於長久潮濕的環境下會產生鹼質粒料反應,造成材料表面凸起剝落。
處置場遭遇飽和環境後,地下水於障壁材料中的滲流會造成混凝土持續溶出失鈣,以及含有高鹼性物質的滲出液與緩衝材料接觸,這將導致膨潤土從原本的鈉型膨潤土轉變為鈣型膨潤土,並產生不具回脹性質的NaAlSi2O6無機物而損失原本應具有的回脹能力。
綜合實驗分析結果發現,於緩衝材料中添加碎石不但可以降低障壁材料之間交互作用對緩衝材料所造成的影響,並且在乾溼循環的環境中,重量與體積的變化量也較少;另一方面,混凝土障壁於不同環境中發生鈣離子釋出或溶出失鈣現象時,就混凝土障壁本身而言,以活性粉混凝土所受到的影響較傳統配比的參考混凝土小,同時,活性粉混凝土對緩衝材料所造成的功能影響也較小。
摘要(英) Both concrete and buffer serve as engineered barriers for isolation of low-level radioactive wastes in a repository. As the disposal site is expected to serve a very long time, the interactions between the two barriers need to be evaluated under the potential unsaturated/saturated situations. The proposed study aims at simulating the long-term scenario of engineered barrier materials and the corresponding effects of the scenario on the expected function of the barrier materials in a final disposal site for low-level radioactive wastes.
In this research, a migration technique was applied to accelerate the migration of calcium ions from the pore solution of concrete so as to investigate the alteration of compacted bentonite in contact with the concrete. The buffer material, was made using Black Hills bentonite from Wyoming mixed with Taitung area argillite to produce different ratios of sand-bentonite mixture as buffer. And the barrier concrete mixes were proportioned according to traditional American Concrete Institute (ACI) mix design method and Reactive Powder Concrete (RPC) with steel fiber.
Also, concrete barrier and buffer are both subjected to extended unsaturated situation as well as saturated situation for further evaluation. High-low relative humidity cycling test was designed to investigate the extended unsaturated situation. Finally, the buffer was treated with water permeated through the concrete after the migration test so as to simulate the sequence of unsaturated and saturated scenarios to be experienced. And the buffer was then tested for the change accompanied by the saturation process.
It was found from the accelerated migration test that the release of calcium from concrete in unsaturated situation results in reduction of swelling capacity of the contacting buffer. And the shorter the distance to the interface, the more the increases in the ratio of calcium to sodium content of buffer material.
In case that the disposal vault remains unsaturated for extended periods, the absorption/loss of moisture causes changes in volume and weight of buffer material, which in turn result in some cracking and localized scaling off at the outer edge of compacted buffer materials. The use of crushed Taitung area argillite will decrease the change in volume and weight of buffer during the wet-dry cycling. However, due to the reactivity nature of Taitung area argillite, traces of alkali-aggregate reaction were noticed on surfaces of buffer mixed with crushed argillite as a result of long-term exposure to wet environment.
Upon saturation of the disposal vault, the leaching of hydroxyl ions from concrete to the buffer may cause (1) dissolution of montmorillonite, and (2) precipitation of mineral such as NaAlSi2O6. Both tend to decrease the swelling capacity of the buffer.
The addition of crushed Taitung argillite aggregate to bentonite showed less damaging effects, resulting from interactions between the contacting barriers, than pure bentonite on the buffer itself. Also, buffer material with 30% crushed aggregate can reduce the change in volume and weight of buffer subjected to high-low relative humidity cycling. On the other hand, the effect of leaching from reactive powder concrete (RPC) on the buffer is less detrimental than that from traditional concrete. Thus, RPC is considered more appropriate as barrier concrete for the final disposal of low-level radioactive wastes.
關鍵字(中) ★ 緩衝材料
★ 未飽和/飽和處置環境
★ 混凝土障壁材料
關鍵字(英) ★ final disposal of low-level radioactive wastes
★ buffer material
★ unsaturated/saturated situations
★ barriers
論文目次 摘要....................................................I
Abstract..............................................III
致謝....................................................V
目錄...................................................VI
圖目錄...............................................VIII
表目錄................................................XII
第一章 緒論.............................................1
1.1 研究動機.............................................1
1.2 研究目的.............................................6
1.3 研究方法與範圍.......................................7
第二章 文獻回顧........................................10
2.1 低放射性廢棄物來源.................................10
2.2 低放射性廢棄物處置現況.............................10
2.2.1 國外低放射性廢棄物處置現況......................10
2.2.2 國內低放射性最終處置場設計概念..................16
2.3 處置場近場環境的演化...............................21
2.3.1 未飽和狀態....................................21
2.3.2 長久未飽和狀態................................22
2.3.3 飽和狀態......................................23
2.4 膨潤土障壁材料所需具備功能..........................24
2.5 膨潤土礦物基本特性.................................26
2.5.1 膨潤土礦物的結晶構造...........................26
2.5.2 膨潤土與水的作用...............................27
2.5.3 分散與絮凝結構................................28
2.6 未飽和土壤組成....................................29
2.6.1 未飽和土壤吸力行為.............................30
2.6.2 土壤-水份特性曲線.............................35
2.7 膨潤土障壁材料與混凝土障壁接觸交互作用...............45
2.7.1 離子交換......................................45
2.7.2 地下水入侵....................................48
2.7.2.1 混凝土溶出失鈣現象.........................49
2.7.2.2 溶出失鈣之過程與機理.......................50
2.7.2.3 影響水泥漿體溶出失鈣之因素..................51
2.7.2.4 混凝土孔隙溶液pH值量測.....................53
2.7.2.5 緩衝材料性質的改變.........................55
第三章 研究計劃........................................63
3.1 試驗材料..........................................63
3.1.1 BH膨潤土....................................63
3.1.2 粒料硬頁岩...................................64
3.1.3 參考混凝土...................................65
3.1.4 活性粉混凝土(RPC混凝土)......................66
3.2 試體製作..........................................66
3.2.1 緩衝材料試體製作...............................66
3.2.2 參考混凝土試體製作.............................70
3.2.3 RPC混凝土試體製作............................71
3.3 近場環境模擬......................................72
3.3.1 初始未飽和狀態................................72
3.3.1.1 電滲加速試驗..............................72
3.3.2 長久未飽和狀態...............................76
3.3.2.1 乾溼循環試驗..............................76
3.3.2.2 水汽平衡法................................77
3.3.2.3 緩衝材料保水性試驗.........................82
3.3.3 飽和狀態......................................83
3.3.3.1 ESL(Ex Situ Leaching)萃取法..............86
3.3.3.2 地下水滲透試驗............................86
3.4 試體後續分析......................................89
3.4.1 回脹潛能試驗..................................89
3.4.2 可交換陽離子容量分析...........................90
3.4.3 pH值測量.....................................91
3.4.4 XRD繞射分析...................................92
3.4.5 TG熱重分析....................................93
3.4.6 SEM掃描式電子顯微鏡............................94
第四章 初始未飽和狀態近場環境模擬試驗結果與分析............95
4.1 材料基本性質分析...................................95
4.2 緩衝材料和混凝土接觸交互作用之模擬分析...............97
4.2.1 電流量測......................................97
4.2.2 交互作用對緩衝材料的影響.......................100
4.2.2.1 陽離子定量...............................100
4.2.2.2 回脹潛能.................................104
4.2.2.3 pH值....................................110
4.2.2.4 熱重分析(TG).............................111
4.2.2.5 X光繞射分析(XRD).........................119
4.2.3 交互作用對混凝土的影響........................123
4.2.3.1 熱重分析(TG) ............................123
4.2.3.2 X光繞射分析(XRD).........................129
4.2.3.3 SEM電子顯微鏡觀測........................134
4.3 小結............................................139
第五章 長久未飽和狀態近場環境模擬試驗結果與分析...........141
5.1 緩衝材料保水性試驗................................141
5.2 乾溼循環試驗.....................................145
5.2.1 重量變化.....................................146
5.2.2 體積變化.....................................152
5.2.3 土壤水份特性曲線..............................157
5.2.4 外觀變化.....................................161
5.3 小結............................................171
第六章 飽和狀態近場環境模擬試驗結果與分析................173
6.1 混凝土滲透液收集與分析............................173
6.1.1 混凝土滲透液離子含量..........................174
6.1.2 混凝土滲透液pH值.............................179
6.2 滲透試驗對混凝土造成的影響.........................181
6.2.1 熱重分析(TG).................................181
6.2.2 X光繞射分析(XRD).............................184
6.2.3 SEM電子顯微鏡觀測............................186
6.3 混凝土滲透液對緩衝材料造成的影響...................190
6.3.1 混凝土滲透液製作..............................191
6.3.1.1 混凝土ESL(Ex Situ Leaching)萃取法........191
6.3.1.2 混凝土滲透試驗滲透液的製作.................191
6.3.2 回脹潛能.....................................193
6.3.3 pH值........................................195
6.3.4 陽離子定量...................................196
6.3.5 熱重分析(TG).................................198
6.3.6 X光繞射分析(XRD).............................201
6.3.7 混凝土滲透液對國內處置場緩衝材料影響評估試算.....205
6.4 小結............................................207
第七章 結論與建議......................................209
7.1 結論............................................209
7.2 建議............................................212
參考文獻...............................................213
參考文獻 王欣婷,(2003),「緩衝材料在深層處置場模擬近場環境下回脹行為基礎研究」,碩士論文,國立中央大學土木工程研究所,中壢。
王明光,(2001),「環境土壤化學」,五南圖書出版。
王守明,(1992),「膨礦土及其加工技術」,礦產保護與利用,第二期,第21-28頁,大陸。
王俊堯,(2011),「低放射性廢棄物最終處置回填材料於近場環境下之長期穩定性研究」,碩士論文,國立中央大學土木工程研究所,中壢。
王櫻茂,(2000),「混凝土構造物的耐久性系列鹼-骨材反應(I)中性化(II)」,台南。
台灣電力公司,(2005),用過核子燃料最終處置計畫書。
台灣電力公司,(2009),低放射性廢棄物最終處置設施,概念設計(B版)。
台灣電力公司,(2014),用過核子燃料最終處置計畫,潛在處置母岩特性調查與評估階段-2010至2013年計畫整合報告。
西林新藏,(1993),成功大學演講記錄。
江彥霆,(2012),「酸蝕環境對於輕質骨材混凝土耐久性影響」, 朝陽科技大學,碩士論文,台中市。
汪信寶,(2004),「日興土活化改質作為緩衝材料之回脹性質改善效應」,碩士論文,國立中央大大學土木工程研究所,中壢。
陳志霖,(2000),「放射性廢料處置場緩衝材料之力學性質」,碩士論文,國立中央大學土木工程研究所,中壢。
陳文泉,(2004),「高放射性廢棄物深層地質處置緩衝材料之回脹行為研究」,博士論文,國立中央大學土木工程研究所,中壢。
陳炳坤,(2006),「高放射性廢棄物最終處置場緩衝材之膨脹穩定性與微觀結構研究」,碩士論文,國立中央大大學土木工程研究所,中壢。
趙杏媛、張有瑜,(1990),「黏土礦物與黏土礦物分析」,海洋出版社,北京。
洪昆煌、王明光、陳尊賢、賴朝明、何聖賓、李達源,(1996),「土壤化學」,國立編譯館。
經濟部低放射性廢棄物最終處置設施場址選擇小組,(2011),建議候選場址遴選報告。
吳柏林,(2005),「放射性廢料處置場中砂-皂土混合緩衝材料之壓實性質」,博士論文,國立中央大學土木工程研究所,中壢。
吳平霄、張惠芬、王輔應、郭九杲、趙文霞,(1999),「蒙脫石熱處理產物的掃描電鏡研究」,礦物岩石,第十九卷,第一期,第19-23頁。
吳冠漢,(2004),「緩衝材料於近場環境下之體積穩定性研究」,碩士論文,國立中央大學土木工程研究所,中壢。
莊文淵,(1998),「土壤材料之核種遷移吸附特性試驗與研究」,核能研究所內部報告,INER-T2443。
莊怡芳,(2008),「未飽和緩衝材料吸力與水力傳導度推求及再飽和行為」,碩士論文,國立中央大學土木工程研究所,中壢。
張皓鈞,(2011),「高放廢棄物最終處置場緩衝材料與混凝土障壁的交互作用」,碩士論文,國立中央大學土木工程研究所,中壢。
單信瑜,(1997),「放射性廢料處置場緩衝回填材料物性及化性之介紹」,核能研究所放射性廢料最終處置核種遷移與水文地質相關技術訓練研討會(第二期)講義。
鄒睿嘉,(2007),「台灣東部骨材的鹼反應檢測與詮釋」,碩士論文,國立中央大學土木工程研究所,中壢。
萬鑫森,(1991),「基礎土壤物理學」,茂昌圖書。
劉東山、蔡昭明,(1993),「放射性廢料管理」,曉園出版社,台北市。
劉隆運,(2010),「低放射性廢棄物最終處置場回填材料之配方與工程特性研究」,碩士論文,國立中央大大學土木工程研究所,中壢。
劉慧玲,(2001),「台東樟原黏土資源之有機黏土備置研究」,碩士論文,國立成功大學資源工程學系,臺南。
歸鳳鐵、陳強、侯海山,(1999),「高純鈉基膨潤土備製新工藝研究」,非金屬礦,第二十二卷,第四期,第36-37 頁,大陸。
緒方信英、小峯秀雄、申島均、長沢達朗、石井卓,(1994),「所定の透氷係数を有するべントナイト混合土の配合設定方法」,粘土科學,第34卷,第2号,第95-101頁(in Japanese)。
高レベル放射性廃棄物の地層処分技術に関する研究開発,(2004),「平成15年度報告」核燃料サイクル開発機構,JNC TN1400 2004-007 (in Japanese)。
Abdullah, W.S., Alshibli, K.A., and Al-Zou′bi, M.S. (1999). “Influence of pore water chemistry on swelling behavior of compacted clays.” Applied Clay Science. Vol.15, pp.447-462.
Alonso, M.C., Castellote, M., Llorente, I., and Andrade, C. (2006). “Ground water leaching resistance of high and ultra high performance concretes in relation to the testing convection regime.” Cement and Concrete Research, Vol. 36, pp.1583-1594.
Alonso, M.C., Garcia Calvo, J. L., Walker C, Naito M., Pettersson, S., Puigdomenech, I., Cuñado, M.A., Vuorio M, Posiva, Weber, H., Ueda, H., and Fujisaki, K. (2012). “Development of an accurate pH measurement methodology for the pore fluids of low pH cementitious materials.” SKB Report R-12-02 Swedish Nuclear Fuel and Waste Management Company, Stockholm, Sweden.
Avner, M., and Petteri, P. (1996). “Chemical and mineralogical aspects of water-bentonite interaction in nuclear fuel disposal conditions.” Technical Research Centre of Finland Espoo.
Aylmore, L.A.G., and Quirk, J.P. (1959). “Swelling of clay-water systems.” Nature, Vol.183, pp.1752-1753.
Biurrun, E., and Haverkamp, B. (2005). “The Richard Underground Repository Enhanced Closure Concep.” The 10th International Conference on Environmental Remediation and Radioactive Waste Management, ICEM05-1463, Scottish Exhibition & Conference Centre, Glasgow, Scotland.
Blackmore, A.V., and Miller, R.D. (1961). “Tactoid size and osmotic swelling in Ca montmorillonite.” Soil Science Society American Journal, Vol.25, pp.169-173.
Boh, H.L., McNeal, B.L., and O′Connor, G.A. (1985). Soil Chemistry, 2nd ed., John Wiley & Sons, New York.
Brooks, R.H., and Corey, A.T. (1964) “Hydraulic properties of porous media.” Hydrology Paper, Colorado State University, Fort Collins, No.3, pp.27-38 .
Carde, C., and Francois, R. (1997). “Effect of the Leaching of Calcium Hydroxide Cement Paste on Mechanical and Physical Properties.” Cement and Concrete Research, Vol. 27, No. 4, pp. 539-550.
Croney, D., and Coleman, J. D. (1954). “Soil Structure in Relation to Soil Suction (pF)” Journal of Soil Science Vol.5, Issue 1, pp.75-84.
Choi, J., Kang, C.H., and Whang, J. (2001). “Experimental assessment of non-treated bentonite as the buffer material of a radioactive waste repository.” Journal of Environmental Science and Health, Part AToxic/Hazardous Substance & Environmental Engineering, Vol.26, No.5, pp.689-714.
Delage, P., Howat, M. D., and Cui, Y. J. (1998). “The relationship between suction and swelling properties in a heavily compacted unsaturated clay.” Engineering Geology, Vol. 50, pp. 31-48.
Di Maio, C. (1996). “Exposure of bentonite to salt solution: osmotic and mechanical effects.” Geotechnique, Vol.46, No.4, pp.695-707.
Egloffstein, T. (1996). “Bentonite as sealing material in geosynthetic clay liners.” in Geosynthetics : Applications, Design and Construction, De Groot, M.B., Den Hoedt, G., & Termaat, R.J., (eds), pp.799-806.
Fredlund, D. G., and Xing, A. (1994). “Equations for the soil-water characteristic curve,” Canadian Geotechnical Journal, Vol. 31, No.4, pp. 521-532.
Fredlund, D. G., and Rahardjo, H. (1993). “Soil mechanics for unsaturated soils.” John Wiley & Sons, Inc., New York.
Fournier, B., and Bérubé, M.A., (2000). “Alkali-Aggregate Reaction in Concrete: a Review of Basic Concepts and Engineering Implications.” Canadian Journal of Civil Engineering, Vol.27, No.2, pp.167-191.
Gillott, J.E. (1975). “Alkali-aggregate reaction in concrete,” Engineering Geology, Vol.9, pp.303-326.
Grim, R.E. (1968). Clay mineralogy, McGraw-Hill Book Co., New York.
Greene-Kelly, R. (1952). “Irreversible dehydration in montmorillonite.” Clay Minerals Bulletin, pp.221-227.
Hadley, D.W. (1961). “Alkali reactivity of carbonate rocks-expansion and dedolomitization,” Proceeding Highway Research Board, Vol.40, pp. 462-474.
Han, W.S., Xia, M.F., Shen, L.T., and Bai, Y.L. (1997). “Statistical formulation and experimental determination of growth rate of micrometer cracks under impact loading.” International Journal of Solids & Structure, Vol.34, pp.2905-2925.
Hillel, D. (1980). “Fundamentals of Soil Physics.” Academic Press, New York.
Janssen D. J. and Dempsey B. J. (1980). “Soil-moisture properties of subgrade soils.” The 60th Annu. Transporation Res. Board Meeting, Washington, D.C.
Jo, H.Y., Katsumi, T., Benson, C.H., and Edil, T.B. (2001). “Hydraulic conductivity and swelling of nonprehydrated GCLs permeated with single-species salt solutions.” Journal of Geotechnical and Geoenvironmental Engineering, Vol.127(7), pp.557-567.
Kamali, S., Gerard, B., and Moranville, M. (2003). “Modelling the leaching kinetics of cement-based materials - influence of materials and environment. ” Cement and Concrete Composities, Vol.25, pp.451-458.
Karlsson, F., Lindgren, M., Skagius, K., Wiborgh, M., and Engkvist, I. (1999). “Evolution of geochemical conditions in SFL 3-5.” SKB Report R-99-15 Swedish Nuclear Fuel and Waste Management Company, Stockholm, Sweden.
Komine, H. (2004).“Simplified Evaluation for Swelling Characteristics of Bentonites.” Engineering Geology, Vol. 71, pp. 3-4.
Komine, H. (2004).“Simplified Evaluation on Hydraulic Conductivities of Sand-Bentonite Mixture Backfill.” Applied Clay Science, 26, 1-4, 13-19.
Krahn, and Frendlund, D.G. (1992). “On total matric and osmotic suction.” Journal of Soil Science, Vol.114, No.5, pp.339-348.
Lambe, T.W (2002). “The structure of compacted clay.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.84, No.SM2.
Lars Olof Höglund, and Kemakta Konsult AB. (2001). “Modelling of long-term concretedegradation processes in the Swedish SFR repository.” Svensk Karnbranslehantering AB, Swedish Nuclear Fuel and Waste Management Co Box 5864.
Madsen, F.T., and Muller-Vonmoos, M. (1989). “The swelling behavior of clays.” Applied Clay Science, Vol.4, pp.143-156.
Makhoukhi, B., Villemin, D., and Didi, M.A. (2013). “Preparation, characterization and thermal stability of bentonite modified with bis-imidazolium salts.” Materials Chemistry and Physics, Vol.138, pp.199-203.
Mallwitz, K., and Savidis, S.A. (1997). "Self-healing properties of clayey soils in liner systems of sanitary landfills. Proc. Intern. Symposium on Engrg." Geology and the environment. Athens, Greece, June 1997, A.A.Balkema, Rotterdam, vol.2, pp.1997- 2002.
Mehta, P. K. (1986). “Concrete Structure Properties and Materials.” Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A.
Meyer, D., Howard, J.J. (1983). “Evaluation of clays and clay minerals for application to repository sealing.” Office of Nuclear Waste Isolation Technical Report, ONWI-486, 12-30.
Mitchell, J.K. (1993). Fundamentals of Soil Behavior. 2nd Edition. John Wiley & Sons Inc., NY.
Newman, A.C.D. (1987). “Chemistry of clays and clay minerals.” Mineralogical Society Monograph, No. 6, Longman Scientific &Technical, Wiley-Interscience, New York.
Naser, A. Al-Shayea. (2001). “The Combined Effect of Clay and Moisture Content on the Behavior of Remolded Unsaturated Soils.” Engineering Geology, Vol.62(4), pp.319-342.
Pusch, R. (1994). Waste Disposal in Rock, Developments in Geotechnical Engineering, 76. Elsevier Publ. Co.
Ramachandran, V., Menon, M.S., and Ramamurthy, B. (1981). “Family structure and mental illness in old age.” Indian Journal of Psychiatry, Vol.23, No.1, pp.21-26.
Richards, B.G. (1965). “Measurement of the free energy of soil moisture by the psychrometric technique by using thermistors,” In Moisture Equilibria and Moisture Changes in Soils Beneath Covered Areas, A Symp. In Print. Australia: Butterworths, pp.39-46.
Saito, H., and Nakane S. (1999). “Comparison between diffusion test and electrochemical acceleration test for leaching degradation of cement hydration products.” ACI Mater J Vol.96, No.2, pp.208-211.
Saito, H., and Deguchi A. (2000). “Leaching tests on different mortars using accelerated electrochemical method.” Cement and Concrete Research, Vol.30, pp.1815-1825.
Savage D., and Benbow S. (2007). “Low-pH Cements.” SKI Report 2007:32, Swedish Nuclear Power Inspectorate (SKI), Stockhoolm, Sweeden.
Seed, H. B., Woodware, R. J., and Lundgren, R. (1962). “Prediction of Swelling Potential for Compacted Clays.” Journal of the Soil Mechanics and Foundation Engineering , ASCE, Vol.88, pp.53-87.
Sillers, W. S., Fredlund, D. G., and Zakerzadeh, N. (2001). “Mathematical attributes of some soil-water characteristic curve models.” Geotechnical and Geological Engineering, Vol.19, pp.243-283.
Stanton, T.E. (1940). “Influence of Cement and Aggregate on Concrete Expansion.” Engineering News-Record, pp.59-61, 124 Feb.
Sumner, M.E. (2000). Handbook of soil science, CRC, USA.
Takafumi S., and Yukikazu, T. (2008). ” Use of a migration technique to study alteration of compacted sand–bentonite mixture in contact with concrete.” Physics and Chemistry of the Earth, Vol.33, pp.S276–S284.
Takase, H. (2004). “Discussion on PA model development for bentonite barriers affected by chemical interaction with concrete: do we have enough evidence to support bentonite stability?” In Joint NUMO and Posiva International Workshop on Bentonite-Cement Interaction in Repository Environments, Tokyo, Japan, pp.172-177.
Taylor, R.K., and Cripps, J.C. (1987). “Weathering Effects: Slopes in Mudrocks and Over-Consolidated Clay.” Chapter 13, Edited by Anderson M.G. and Richard K.S., John Wiley & Sons.
Taylor, H. F. W. (1993). “Nanostructure of CSH: current status.” Advanced Cement-Based Materials Vol.1, pp.38-46.
Taylor, H. F. W. (1997). “Cement Chemistry.” Academic Press, London.
Tiina Heikola (2008). “Dynamic Leach Testing of Low- and Medium-pH Injection Grouts to Be Used in Deep Repositories.” Master’s Thesis, Department of Chemistry, University of Jyväskylä.
van Genuchten, M. T. (1980). “A closed form equation for predicting the hydraulic conductivity of unsaturated soils,” Soil Science Society of America Journal, Vol.44, pp.892-898.
William Thomson. (1871). “On the equilibrium of vapour at a curved surface of liquid.” Philosophical Magazine, series 4, Vol.42, No.282, pp.448-452.
Yong, R. N., and Benno, P. W. (1975). Soil Properties and Behavior Elsevier, NewYork.
Yong, R.N. (1999). “Soil suction and soil-water potentials in swelling clays in engineered clay barriers.” Engineering Geology, Vol.54, pp.3-13.
Young, J. F., Mindess, S., and Darwin, D. (2002), Concrete, Prentice-Hall, Inc., Upper Saddle River, New Jersey, U.S.A.
Vanapalli, S. K., Fredlund , D. G., and Pufahl, D. E. (1999). “The effect of soil structure and stress history on the soil-water characteristics of a compact till.” Geotechnique, Vol.49, No.2, pp.143-159.
指導教授 黃偉慶(Wei-Hsing Huang) 審核日期 2015-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明