博碩士論文 102621010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:89 、訪客IP:3.142.43.151
姓名 陳昀靖(Yun-jing Chen)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 西北太平洋地區颱風活動隨全球暖化的改變
(Change of tropical cyclone activity in Western North Pacific under the global warming)
相關論文
★ 宜蘭地區秋冬季降雨特性之研究★ 台灣地區午後對流降水特性之分析
★ 利用MM5模式評估台灣地區風能蘊藏量之研究★ 台灣梅雨季中尺度對流系統之數值模擬研究-TAMEX IOP 8 個案
★ 全球氣候模式(NCAR CCM2/3)模擬東亞氣候變遷之研究★ 利用整合探空系統分析南海北部大氣邊界層特性之研究
★ 中尺度波譜模式對梅雨期豪雨個案模擬之研究★ MM5對東亞地區梅雨季的模擬及其可預報度之研究
★ 宜蘭地區秋冬季豪大雨特性之研究★ 台灣東南部地區局部環流與邊界層特性之研究
★ 台灣東南部地區複雜地形局部環流的模擬研究★ 宜蘭地區豪雨個案之研究
★ 台灣北部地區雨滴粒徑分佈特性與降雨估計之探討★ 冬季雹暴個案之分析與模擬
★ 伴隨敏督利颱風的強烈西南氣流引發豪大雨之個案探討★ 東亞大氣年際變化之研究與模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用了高解析度大氣模式HiRAM以及三個CMIP5的模式CNRM-CM5、MIROC5以及GFDL-ESM2G對於西北太平洋地區颱風活動在全球暖化下會如何改變進行分析。在此針對颱風總個數、生命週期、颱風生成及路徑分布以及降雨強度的改變進行討論。

從模擬結果可發現,當溫室氣體濃度上升時,各個模式模擬出的西北太平洋地區的大尺度環境場皆會有以下的改變: (1)海溫上升、(2)近赤道太平洋地區東西向海溫梯度減弱、(3)沃克環流減弱、(4)西北太平洋副高西伸、(5)季風槽減弱、(6)穩定度增加以及(7)低對流層比濕增加等情況。

因此,分析其結果發現各個模式在西北太平洋颱風個數在全球暖化下會因為季風槽減弱以及穩定度增加而減少。而低層比濕以及海表面溫度的增加提供更多的水氣使得颱風的平均降雨強度增加。此外受到副高西伸的影響,造成颱風路徑在全球暖化下會有向西或者向南偏的趨勢。而各模式模擬出颱風的生命週期在全球暖化下皆無明顯的改變。

在颱風強度方面,HiRAM、CNRM-CM5以及GFDL-ESM2G都模擬出西北太平洋熱帶地區潛勢強度隨全球暖化上升,造成颱風平均最大風速上升且較強的颱風期比例或個數有上升的情形。但MIROC5則顯示出西北太平洋熱帶地區潛勢強度隨全球暖化減弱造成颱風的平均最大風速下降,且強颱個數減少。

HiRAM、CNRM-CM5以及GFDL-ESM2G都模擬出垂直風切在全球暖化之情況下在西北太平洋熱帶氣區有減弱的趨勢。但MIROC5則模擬出風切增強的結果。而在暖水層厚度方面,CNRM-CM5以及GFDL-ESM2G都模擬出在模式中的颱風主要生成區暖水層厚度都有明顯加深,有利於強颱生成。但MIROC5則在該模式之颱風主要生成區內暖水層厚度沒有明顯的增加。

雖然在颱風強度、垂直風切以及暖水層厚度的改變方面各模式所模擬出的結果不盡相同,但大多數模式認為颱風強度會增強且垂直風切以及暖水層厚度的改變是有利於颱風發展的,因此在未來較有可能出現上述的改變。

摘要(英) Tropical cyclone (TC) activity in Northwest Pacific Ocean is analyzed in 3 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) CNRM-CM5, MIROC5 and GFDL-ESM2G and high-resolution atmospheric model(HiRAM) . We discuss the total number, lifetime, intensity, track variation of tropical cyclones under different climate scenarios in the Northwest Pacific Ocean.

All of models show that there are several changes of large-scale environment occurred with global warming in the West North Pacific. (1) Sea surface temperatures increase. (2) sea surface temperature gradient of equatorial Pacific decrease (3)Walker circulation weakens. (4) West North Subtropical high extend westward. (5) monsoon through weakens. (6)Stability increase and (7) Specific humidity in low troposphere increase.

Therefore , all of models show that the number of TC decrease. This reduction is associated with increment of stability and weakness of monsoon through. The increment of specific humidity in low troposphere cause the rainfall brought by TCs become stronger .And the track of TCs tend to westward instead of northward because of the westwardly extension of West North Subtropical high.

Tropical cyclone strength , HiRAM, CNRM-CM5 and GFDL-ESM2G are simulate that potential intensity will increase in tropical Northwest Pacific under the global warming, so average maximum wind speed of TCs increase and the number or ratio of stronger TCs increase. But MIROC5 shows that average maximum wind speed decrease and reduce the number of stronger TCs because of the decrement of potential intensity.

關鍵字(中) ★ 颱風
★ 全球暖化
關鍵字(英) ★ Typhoon
★ global warming
論文目次 中文摘要 I

英文摘要..........................................................III

致謝 ...............................................................V

目錄 ..............................................................VI

表目錄 VIIII

圖目錄 VIIII

第一章 緒論 1

1.1 前言與文獻回顧 1

1.2 研究動機與目的 3

1.3 論文結構 5

第二章 資料來源與研究方法 6

2.1 資料來源 6

2.1.1 CMIP5 6

2.1.2 ERA-Interim 7

2.1.3 JTWC最佳路徑資料 7

2.2 氣旋追蹤方法與原理 7

2.3 熱帶氣旋定義方法 9

2.5 研究週期及範圍 10

第三章 模式模擬能力驗證 11

3.1 模式模擬之氣候場 11

3.1.1 ERA-Interim之氣候場 12

3.1.2 模式之氣候場 12

3.2 模式模擬之熱帶氣旋 13

3.2.1 熱帶氣旋結構 13

3.2.2 熱帶氣旋個數、最大風速、生命週期 14

3.2.3 熱帶氣旋生成分布 15

3.2.4 熱帶氣旋路徑分布 16

第四章 大尺度環境在全球暖化下的改變 18

4.1 海表面溫度 18

4.2 沃克環流 19

4.3 太平洋副高、季風槽 21

4.4 大氣穩定度 23

4.5 低層比濕 24

4.6 颱風潛勢強度 25

4.7 垂直風切 26

4.8 暖水層厚度 27

第五章 颱風活動在全球暖化下的改變 29

5.1 生成分布 29

5.2 路徑分布 29

5.3 平均降雨強度 31

5.4 颱風年平均個數、生命週期及強度 31

第六章 結論與未來展望 35

6.1 模式之共通性 35

6.2 模式之不確定性 35

6.3 結論 36

6.4未來展望 37

參考文獻 38

附表 43

附圖 45

參考文獻 李智傑,2013:西北太平洋颱風動力降尺度模擬及其氣候變遷推估。國立台灣師範大學地球科學系碩士論文。

洪浩哲,2013:西北太平洋副熱帶高壓西伸東退對西北太洋熱帶氣旋氣候特性的

影響。國立中央大學大氣物理研究所碩士論文。

楊承道,2008:氣候變遷對西北太平洋熱帶氣旋的影響。國立中央大學大氣物理

研究所碩士論文。

Bengtsson L., K. I. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, J. J. Luo, and T. Yamagata., 2007 : How may tropical cyclones change in a warmer climate? Tellus, V59A, 539-561.

Bengtsson L., M. Botzet, and M. Esch, : Will greenhouse gas induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus, 48A, 57–73.

Bister, M. and Emanuel, K. A. 1998. Dissipative heating and hurricane

intensity. Meteor. Atm. Phys. 52, 233–240.

——, 2002a. Low frequency variability of tropical cyclone potential intensity, 1, interannual to interdecadal variability. J. Geophys. Res. 107, 4801, doi:10.1029/2001JD000776.

Camargo S., 2013 : Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 9880–9902

Chao He and Tianjun Zhou, 2015: Responses of the Western North Pacific Subtropical High to Global Warming under RCP4.5 and RCP8.5 Scenarios Projected by 33 CMIP5 Models: The Dominance of Tropical Indian Ocean–Tropical Western Pacific SST Gradient. J. Climate, 28, 365–380.

D. P. Dee et al. (2011) The ERA-Interim reanalysis: configuration and

performance of the data assimilation system. Q. J. R. Meteorol.

Soc. 137, 553

Dunne, J. P., et al., 2012: GFDL’s ESM2 global coupled climate-carbon Earth System Models Part I: Physical formulation and baseline simulation characteristics. J. Climate., 25, 6646–6665.

Emanuel, , 1988 : The maximum intensity of hurricanes. J. Atmos. Sci., 45, 1143–1155.

——, 2005 : Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686-688.

Emanuel, K. A. and Nolan, D. S. 2004. Tropical cyclone activity and global climate. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240–241

Gill, A. E., 1980: Some simple solutions for heat induced tropical

circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462.

Gray,W. M. 1979. Hurricanes: their formation, structure and likely role

in the tropical circulation. In: Meteorology over the Tropical Oceans.pp. 155–218.

Haarsma, R. J., J. F. B. Mitchell, and C. A. Senior, 1992 : Tropical Disturbances in a GCM, Clim. Dyn., 8, 247–257.

Hodges, K. I., 1994: A general method for tracking analysis and its application to meteorological data. Mon. Wea. Rev., 122, 2573– 2586.

I-I Lin, C. H. Chen, I. F. Pun, W. T. Liu, and C. C. Wu, 2009: Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008). Geophys. Res. Lett., 36, L03817, doi:10.1029/2008GL035815.

I-I Lin, Chun-Chieh Wu, Kerry Emanuel, I-Huan Lee, Chau-Ron Wu, and Iam-Fei Pun, The interaction of Supertyphoon Maemi ,2003 : with a warm ocean eddy, Monthly Weather Review, p. 2635-2649, doi: 10.1175/MWR3005.

I-I Lin, W. Timothy Liu, Chuin-Chieh Wu, John C. H. Chiang, and Chun-Hsin Sui, 2003 : Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling. Geophysical Research Letters, Vol. 30, No. 3, 1131, doi: 10.1029/2002GL015674

IPCC ,2000: A Special Report of emissions scenarios. The Science of Climate Change Contribution of Working Group Ⅲ of the Intergovernmental Panel on Climate Change [Nebojsa N., D. Ogunlade, D. Gerald, G. Arnulf, K. Tom, L. L. R. Emilio, M. Bert, M. Tsuneyuki, P. William, P. Hugh, S. Alexei, S. Priyadarshi, S. Robert, W. Robert, D. Zhou (eds.)]. Cambridge University Press .

Lu, X., H. Yu, and X. Lei, 2011: Statistics for size and radial wind profile of tropical cyclones in the western North Pacific. Acta Meteor. Sinica,25,104-112.

Meehl, G. A., W. D. Collins, B. A. Boville, J. T. Kiehl, T. M. L. Wigley, and J. M. Arblaster, 2000: Response of the NCAR Climate SystemModel to increased CO2 and the role of physical processes. J. Climate, 13, 1879–1898.

Murakami H, Sugi M ,2010: Effect of model resolution on tropical

cyclone climate projections. SOLA 6:73–76

Rathmann, N. M., S. Yang, and E. Kass, 2013: Tropical cyclones in enhanced resolution CMIP5 experiments. Climate Dyn., 42, 665–681, doi:10.1007/s00382-013-1818-5

Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407, doi:10.1029/2002JD002670 (2003).

Roeckner E., K. Arpe, L. Bengtsson, M. Christoph, M. Claussen, L. Duemenil, M. Esch, M. Giorgetta, U. Schlese, and U. Schulzweida, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Report of the Max-Planck-Institute, Hamburg, 218, 90.



Stowasser, M., Y. Wang, and K. Hamilton, 2007 : Tropical cyclone change in the Western North Pacific in a Global warming scenario. J. Climate, 20, 2378-2396.

Sugi, M. , and N. Sato, 2002 : Influence of the global warming on tropical cyclone climatology: an experiment with the JMA global model. J. Meteorol. Soc. Jpn., 80, 249–272.

Vecchi, G. A., and Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 73–76.

Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Matsui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK ,2011a : Representative concentration pathways: An overview. Climatic Change. doi:10.1007/s10584-011-0148-z

Voldoire, A., et al. ,2012 : The CNRM-CM5.1 global climate model: Description and basic evaluation, Clim. Dyn., doi:10.1007/s00382-011- 1259-y.

Wu B, Zhou T, Li T ,2009 : Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate. 22:2992–3005.

Wang B, Yim SY, Lee JY, Liu J, Ha KJ, 2014: Future change of Asian-Australian monsoon under RCP4.5 anthropogenic warming scenario. Clim Dyn 42:83–100. doi:10.1007/s00382-012- 1564-0

Watanabe M, Suzuki T, O’ishi R, Komuro Y, Watanabe S, Emori S, Takemura T, Chikira M, Ogura T, Sekiguchi M, Takata K, Yamazaki D, Yokohata T, Nozawa T, Hasumi H, Tatebe H, Kimoto M (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Climate 23:6312– 6335. doi:10.1175/2010JCLI3679.1

Zhao, M., Held, I., Lin, S.-J. & Vecchi, G. A. (2009) Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50 km resolution GCM. J. Climate. 22, 6653–6678.

Zhou T.J, Yu R.C., Zhang J, Drange H, Cassou C, Deser C, Hodson DLR, Sanchez-Gomez E, Li J, Keenlyside N, Xin X-G, Okumura Y ,2009 : Why the Western Pacific subtropical high has extended westward since the late 1970s. J. Climate. 22, 2199–2215

指導教授 林沛練、曾仁佑(Pay-liam Lin Ren-yow Tzeng) 審核日期 2015-8-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明