博碩士論文 102322058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.17.165.235
姓名 凃秉杰(Bing-jie Tu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 潰壩流撞擊直立平板之流況分析
相關論文
★ 不均勻圓形橋墩之局部沖刷研究★ 砂礫河床之跌水沖刷分析
★ 土石流潛勢判定模式及土石壩滲流破壞之研究★ 港池污染擴散影響因子之探討
★ 不均勻橋墩及群樁基礎之局部沖刷研究★ 邊牆射流及尾檻對砂質底床之沖刷研究
★ 砂粒受水平振動行為之研究★ 土石流發生之水文特性探討
★ 不均勻橋墩與套環保護工法之局部沖刷研究★ 護坦及尾檻下游之局部沖刷分析
★ 橋台束縮與局部沖刷之研究★ 慢顆粒流之輸送帶實驗與影像分析
★ 均勻入滲時坡面地下水流之理論解析★ 尾檻設置對下游之局部沖刷效應
★ 二維斜坡顆粒流之輸送帶實驗與分析★ 斜坡土體滲流破壞引致土石流之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 土石流及海嘯的流動過程中都屬於潰壩流的一種,而這些大自然災害破壞力相當巨大,對於人民的財產安全會造成嚴重的損失,而這些損失往往都是難以估計的,因此防範這些大自然的災害就變成重要的課題。
本研究經由二維渠槽進行一系列的潰壩流實驗,由於坡地溪床的縱坡約6o~9o,因此實驗除了水平底床的潰壩流實驗以外,也將渠槽裝置一個6o的傾斜底床來進行比較。潰壩流實驗採用五個不同的潰壩高度撞擊垂直平板,分析垂直平板不同高程處的壓力分佈、波前速度以及撞擊高度。實驗結果發現在越接近底床處越容易發生最大壓力,且也有較大的誤差,而傾斜底床測得最大的壓力約為水平底床1.2~1.5倍。裝置傾斜底床後流體波前的瞬時速度會越接近2√gH。流體撞擊垂直平板的高度可以得知壓力是否會有明顯峰值的現象發生,顯示撞擊高度與壓力的形成方式有很大的關係。
摘要(英) The movement of tsunamis and dam-break flows may cause enormous disasters during their paths due to their significant heights and velocities.
In this study, the dam-break flows are examined by performing experimental tests, which include dam-break surges on both a horizontal bed and an inclined slope of 6 o . Five different dam heights was arranged, and the pressure distribution on the downstream vertical plate due to the impact of surges are analyzed. The approaching surge velocity and height of flow impact upon the vertical plate were analyzed via the high-speed camera. The maximum pressure on the vertical plate locates close to the channel bed, and the pressure distribution follows an exponentially decay curve instead of a linear profile. The maximum pressures on the tilt bed are about 1.2 to 1.5 times the values of the horizontal bed. The approaching velocity of the surge front is close 2√gH on the tilt bed. The forces acting on the vertical wall can be found by the integration of pressure distribution on the wall, which depicts the same pattern for both the horizontal bed and the tilt bed.
關鍵字(中) ★ 潰壩流
★ 湧浪
★ 垂直牆
★ 衝擊壓力
關鍵字(英) ★ Dam-Break
★ Surges
★ Vertical wall
★ Impact pressure
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 研究目的 2
1.3 研究方法 2
1.4 論文架構 2
第二章 文獻回顧 4
2.1潰壩之波前特性 4
2.2潰壩相關之實驗 6
2.3 潰壩之衝擊壓力 8
2.4 潰壩之水面線 9
第三章 實驗配置與分析方法 10
3.1實驗設備 10
3.2實驗步驟 14
3.3 分析方法 15
3.3.1 壓力分析 15
3.3.2 潰壩流況分析 15
第四章 實驗結果與討論 17
4.1.1水平底床水面流況 17
4.1.2 水平底床波前速度與撞擊高度 30
4.1.3 水平底床撞擊壓力 34
4.2.1傾斜底床水面流況 43
4.2.2 傾斜底床波前與撞擊高度 54
4.2.3 傾斜底床撞擊壓力 58
4.3 平板與斜板之比較 67
4.4 總力計算與應用 68
第五章 結論與建議 69
5.1 結論 69
5.2 建議 70
參考文獻 71
參考文獻 1.魏妙珊( 2009 ),「三維海嘯湧潮對近岸結構物之影響」,國立中央大學水文與海洋科學研究所,碩士論文。
2.顏均豪(2014),「土石流撞擊直立平板之水壓及作用力分析」,國立中央大學土木工程學系,碩士論文。
3.Armanini, A., & Scotton, P. (1992) . Experimental analysis on dynamic impact of a debris flow on structure. 6th INTERPRAEVENT Vol. 6.
4.Armanini, A. (1997) . On the dynamic impact of debris flows. In Recent Developments on Debris Flows, 208-226.
5.Brooks, G.R. and Lawrence, D.E. (1999). The Drainage of the Lake Ha!Ha! Reservoir and Downstream Geomorphic Impacts Along Ha!Ha! River, Saguenay Area, Quebec, Canada. Geomorphology 28(1–2), 141–168.
6.Cagatay, H., Kocaman, S. (2008a). Experimental study of tailwater level effects on dam-break flood wave propagation. River Flow 2008 Cesme, Turkey 1, 635–644.
7.Capart, H. (2000). Dam-Break Induced Geomorphic Flows and the Transition from Solid- to Fluid-Like Behaviour Across Evolving Interfaces. PhD Thesis, Université catholique de Louvain.
8.Cagatay, H., Kocaman, S. (2010). Dam-break flows during initial stage using SWE and RANS approaches. Journal of Hydraulic Research Vol. 48, No. 5 (2010), pp. 603–611.
9.Cumberbatch, E. (1960). The impact of a water wedge on a wall, Jour. Fluid Mech., Vol. 7, pp. 353-373.
10.Cross, R.H. (1966). Water surge forces on coastal structures, Technical Report HEL-9-10, University of California, Berkeley, pp. 1-106.
11.Costa, J.E. and Schuster, R.L. (1988). “The Formation and Failure of Natural Dams”. Bull. Geol. Soc. Am. 100, 1054–1068.
12.Fraccarollo, L. and Capart, H. (2002). RiemannWaveDescription of Erosional Dam-Break Flows. J. Fluid Mech.461, 183–228.
13.Ishikawa, N., Inoue, R., Hayashi, K., Hasegawa, Y., Mizuyama, T. (2008). Experimental approach on Measurement of impulsive fluid force using debris flow model. Interpraevent 2008 – Conference Proceedings, Vol. 1.
14.Ishikawa, N., Inoue, R., Beppu, M., Hasegawa, Y., & Mizuyama, T.(2010) “Dynamic load characteristics of debris flow model usingdifferent gravel size distribution„ Symposium Proceedings of INTERPRAEVENT 2010, 207-216.
15.Janosi, I.M., Dominique, J., Gabor Szabo, K. and Tamas, T. (2004). Turbulent drag reduction in dam-break flows. Experiments in Fluids 37 (2004) 219–229.
16.Lauber, G., Hager, W.H. (1998). Experiments to dam-breakwave: Horizontal channel. J. Hydraulic Res. 36(3),291–308.
17.Lobovsky ́, L., Botia-Vera, E., Castellana, F., Mas-Soler, J (2013). Experimental investigation of dynamic pressure loads during dam break, Journal of Fluids and Structures.
18.Nakamura, S and Tsuchiya, Y (1973). On the Shock Pressure of Surge on a Wall, Bull. Dims. Prey. Res. Inst., Kyoto Univ., Vol. 23, Parts 3-4, No. 212.
19.Nsom, B., Debiane, K., Piau. J. M., (2000). Bed slope effect on the dam break problem, Journal of Hydraulic Research., VOL. 38, NO. 6.
20.Stansby, P. K., Chegini, A., Barnes, T. C. D. (1998) The initial stages of dam-break flow. J. Fluid Mech. (1998), vol. 374, pp. 407-424.
21.Spinewine, B., Zech, Y (2007). Small-scale laboratory dam-break waves on movable beds, Journal of Hydraulic Research Vol. 45 Extra Issue (2007), pp. 73–86.
指導教授 周憲德(Hsien-Ter Chou) 審核日期 2015-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明