博碩士論文 102322091 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.220.178.207
姓名 連信豪(Hsin-Hao Lien)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 融合AMSR2與MODIS衛星資料推估高解析地表土壤含水量
(Data Fusion for Surface Soil Moisture Using AMSR2 and MODIS)
相關論文
★ 多時期衛星影像之自動化監督性分類★ 大範圍地區土地使用分類之研究
★ 高解析力衛星影像控制點座標之自動化萃取★ 影像最佳類別數目之研究
★ 遙控直昇機應用於工程管理監測可行性之研究★ 以地理資訊系統輔助共同管道之最適設計
★ 有理函數應用於空載多光譜影像幾何校正之研究★ SPOT自然色影像產生之研究
★ 結合影像區塊及知識庫分類之研究-以IKONOS衛星影像為例★ 遙控飛機空載視訊影像自動化鑲嵌方法之研究
★ 影像分割技術於高解析衛星影像分類之應用★ 小波多層次解析之影像融合應用
★ 線性複合模式應用於變遷偵測之研究★ 改良式變異向量分析法於變遷偵測之探討
★ 區塊分割變遷偵測法於多時期衛星影像之應用★ 資料挖掘技術應用於外來入侵植物研究 (以恆春地區銀合歡為例)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 地表土壤含水量是運用在氣象學、氣候學、水文學及生態學的重要參數之一。遙感探測感測器AMSR2 (Advanced Microwave Scanning Radiometer 2)提供10公里的地表土壤含水量影像,能應用於大尺度地表土壤含水量的監測,然而,低空間解析度將限制地表土壤含水量影像的應用性。過去實驗中,發現地表土壤含水量、常態化多波段乾旱指數(Normalized Multi-band Drought Index, NMDI)及葉面積指數(Leaf Area Index, LAI)共三項資料間存在著關聯性,低葉面積指數時,NMDI與地表土壤含水量呈現負相關的現象,而此關係於葉面積指數漸增的過程中逐漸消失。因此,期望能將地表土壤含水量、NMDI及葉面積指數進行迴歸分析並建立地表土壤含水量的推估模式。本研究主要目的為建立迴歸模式,再以1公里葉面積指數影像及NMDI影像推估1公里高空間解析度的地表土壤含水量影像。本研究研究區域為中美洲,且針對該區之乾季(12月至隔年5月)進行研究,而收集2013年至2015年1月至4月的AMSR2及MODIS (Moderate Resolution Imaging Spectroradiometer)資料。融合這些衛星資料,並得到迴歸分析結果,其平均絕對誤差(Mean Absolute Error, MAE)為1.8 % 至 2.6 %,經過誤差補償後,平均絕對誤差能下降0.1 % 至 1.0 %。這結果證實了過去研究所發現地表土壤含水量、NMDI及葉面積指數共三項資料間存在著關聯性,並利用此關聯降低AMSR2土壤含水量的空間解析度。本研究發展一個創新的方式融合AMSR2及MODIS,以期望AMSR2資料的應用性能有所增加。
摘要(英) Surface soil moisture (SSM) is one of the most significant variables for various applications in meteorology, climatology, hydrology, and ecology. To monitor SSM for large scale, Advanced Microwave Scanning Radiometer 2 (AMSR2) provides SSM data with a spatial resolution of 10 km. However, this coarse resolution limits the applicability of the SSM product. Experiments from previous studies have revealed a relationship between SSM, normalized multi-band drought index (NMDI) and leaf area index (LAI). In general, the NMDI represents a negative relation with SSM, when the LAI is low. The negative relationship between NMDI and SSM becomes less significant with the increase of LAI. Accordingly, a bivariate regression analysis is expected to formulize the relationship between NMDI, LAI and SSM. The main objective of this study is to generate 1-km resolution SSM data by using 1-km resolution LAI and 1-km resolution NMDI, derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data, after a regression model can be obtained. The study area is located in Central America, and the study mainly focuses on the dry season (December-May). The period of image acquisition of AMSR2 and MODIS is from January to April, 2013 to 2015. Fusing these satellite datasets to obtain the regression analysis model, and the mean absolute errors (MAE) are 1.8 % to 2.6 %. The MAEs are reduced 0.1 % to 1.0 % after error compensation. It confirmed the relationship described by the previous study, and therefore was then applied for AMSR2 SSM downscaling. The study developed an innovative method for data fusion among AMSR2 and MODIS, and is expected to enhance the applicability of the AMSR2 data.
關鍵字(中) ★ 常態化多波段乾旱指數
★ 葉面積指數
★ 地表土壤含水量
★ AMSR2
★ MODIS
關鍵字(英) ★ NMDI
★ LAI
★ Surface Soil Moisture
★ AMSR2
★ MODIS
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
一、緒論 1
1-1  研究動機 1
1-2  目的 2
二、文獻回顧 3
2-1  地表土壤含水量 3
2-2  乾旱指數與地表土壤含水量的關係 4
三、研究區域與資料 7
3-1  研究區域 7
3-2  研究資料 8
3-2-1 AMSR2產品影像 8
3-2-2 MODIS產品影像 11
四、研究方法 15
4-1  資料前處理 17
4-1-1 AMSR2產品影像前處理 17
4-1-2 MODIS產品影像前處理 21
4-2  NMDI、葉面積指數及地表土壤含水量敏感度分析 29
4-3  地表土壤含水量推估模式 33
4-4  模式驗證 40
五、成果與討論 42
5-1  地表土壤含水量推估模式之二階段驗證結果 42
5-2  高解析地表土壤含水量影像成果之展示與分析 43
5-3  高解析度地表土壤含水量成果與AMSR2產品影像之細節比較 63
六、結論與建議 65
6-1  結論 65
6-2  建議 66
參考文獻 68
參考文獻 Akther, M. S., & Hassan, Q. K. (2011). Remote sensing-based assessment of fire danger conditions over boreal forest. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 4(4), 992-999.
Barnes, W. L., Xiong, X. J., & Salomonson, V. V. (2002). Status of terra MODIS and aqua modis. In Geoscience and Remote Sensing Symposium, 2002. IGARSS′02. 2002 IEEE International (Vol. 2, pp. 970-972). IEEE.
Chen, C. F., Valdez, M. C., Chang, N. B., Chang, L. Y., & Yuan, P. Y. (2014). Monitoring spatiotemporal surface soil moisture variations during dry seasons in central America with multisensor cascade data fusion. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 7(11), 4340-4355.
Gladkova, I., Grossberg, M. D., Shahriar, F., Bonev, G., & Romanov, P. (2012). Quantitative restoration for MODIS band 6 on Aqua. Geoscience and Remote Sensing, IEEE Transactions on, 50(6), 2409-2416.
Jackson, T. J., & Schmugge, T. J. (1991). Vegetation effects on the microwave emission of soils. Remote Sensing of Environment, 36(3), 203-212.
Kachi, M., Naoki, K., Hori, M., & Imaoka, K. (2013). AMSR2 validation results. In Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International(pp. 831-834). IEEE.
Kerr, Y. H., Waldteufel, P., Wigneron, J. P., Martinuzzi, J. M., Font, J., & Berger, M. (2001). Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. Geoscience and Remote Sensing, IEEE Transactions on, 39(8), 1729-1735.
Kim, J., & Hogue, T. S. (2012). Improving spatial soil moisture representation through integration of AMSR-E and MODIS products. Geoscience and Remote Sensing, IEEE Transactions on, 50(2), 446-460.

Koike, T. (2013). Chapter 8: Description of the GCOM-W1 AMSR2 Soil Moisture Algorithm (Descriptions of GCOM-W1 AMSR2 Level 1R and Level 2 algorithm). Japan Aerospace Exploration Agency Earth Observation Research Center.
Lakshmi, V. (2013). Remote sensing of soil moisture. ISRN Soil Science, 2013.
Liu, W. D., Baret, F., Gu, X. F., Tong, Q. Z., Zheng, L. F., & Zhang, B. (2002). Relating soil surface moisture to reflectance. Remote sensing of environment,81, 238-246.
Lobell, D. B., & Asner, G. P. (2002). Moisture effects on soil reflectance. Soil Science Society of America Journal, 66(3), 722-727.
Muller, E., & Decamps, H. (2001). Modeling soil moisture–reflectance. Remote Sensing of Environment, 76(2), 173-180.
Myneni, R., Knyazikhin, Y., Glassy, J., Votava, P., & Shabanov, N. (2003). User’s Guide FPAR, LAI (ESDT: MOD15A2) 8-day Composite NASA MODIS Land Algorithm, Terra MODIS Land Team.
Njoku, E. G., Jackson, T. J., Lakshmi, V., Chan, T. K., & Nghiem, S. V. (2003). Soil moisture retrieval from AMSR-E. Geoscience and Remote Sensing, IEEE Transactions on, 41(2), 215-229.
Piles, M., Camps, A., Vall-Llossera, M., Corbella, I., Panciera, R., Rüdiger, C., Kerr, Y. H. & Walker, J. (2011). Downscaling SMOS-derived soil moisture using MODIS visible/infrared data. Geoscience and Remote Sensing, IEEE Transactions on, 49(9), 3156-3166.
Rakwatin, P., Takeuchi, W., & Yasuoka, Y. (2009). Restoration of Aqua MODIS band 6 using histogram matching and local least squares fitting. Geoscience and Remote Sensing, IEEE Transactions on, 47(2), 613-627.
指導教授 陳繼藩(Chi-Farn Chen) 審核日期 2015-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明