博碩士論文 102324063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.224.73.107
姓名 呂權城(Quan-cheng Lu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(Doped zirconia up-conversion phosphor and its acrylate nanocomposite)
相關論文
★ MFI沸石奈米結晶製備研究★ 氧化鋅奈米粒子的表面改質與分散
★ 濕法製備氧化鋅摻雜鋁之透明導電膜★ 強吸水性透明奈米沸石膜
★ 奈米氧化鋅透明導電膜的製作★ 製作AZO透明導電膜的各種嘗試
★ 奈米結晶氧化鋯合成與分散★ 接枝PDMS之奈米氧化鋯及其與矽膠複合膜之光學性質
★ 奈米氧化鋯之表面接枝及其與壓克力樹酯複合膜之電泳沉積★ 沸石晶核的製備與排列
★ 納米級氧化鋯結晶粒子之高濃度穩定懸浮液製備★ 聚芳香羧酸酯之合成及性質研究
★ MFI沸石超微粒子之製作★ 四氯化鈦之控制水解研究
★ 具環氧基矽烷包覆奈米粒子之研究★ 具再分散性之奈米級氧化鋯結晶粒子之合成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究分為氧化鋯與壓克力之奈米複合材料研發與奈米升頻螢光劑合成與應用兩部分。我們首先在低溫強鹼環境下製備約6 nm之氧化鋯立方晶粒子,接著依序以醋酸與-carboxyethyl acrylate進行表面修飾。根據熱重與液態核磁共振分析推算,每奈米平方表面分別接枝了1.3個醋酸與2.5個 -carboxyethyl acrylate。經雙重修飾的粒子可透明分散至醚酯類與非極性溶劑中,並可混合至商用壓克力單體中(OPPA)得到透明膠體。將此膠體塗佈於玻璃基板硬化後,可製作出透明度大於95%且折射率約1.74的透明連續膜。
我們又在合成時添加稀土元素製備出約6 nm摻雜稀土氧化鋯粒子。清洗後鍛燒至900oC。獲得具升頻效果之奈米螢光劑。並以ICP、PL、XRD和TEM分析稀土元素濃度、清洗方式與鍛燒溫度對升頻轉換之影響。結果顯示稀土元素的摻雜量與晶相的穩定成正比關係。當Er2O3/Yb2O3/Y2O3莫耳參雜量等於1.2/5.8/3.7且經900oC鍛燒者,其升頻轉換的效率最高。以980 nm入射光產生的升頻螢光可分為紅光(650 nm)與綠光(544 nm)。鍛燒至700oC的樣品,其紅綠光的比例會隨Er2O3/Yb2O3摻雜比例增加而增加。然而鍛燒至900oC的樣品,其紅綠光的比例固定,不隨Er2O3/Yb2O3比例改變。此螢光劑在波長354 nm之紫外線激發下,亦會放射出由350 nm跨越至650 nm的寬頻螢光。最後我們嘗試將此螢光劑混入染料敏化太陽能電池所用之散射層中並與常規之太陽能電池比較。雖然原先預期可將紅外線轉換成可見光並反射,以增加光源之利用。但是實際測量發現反射層中奈米螢光劑參雜的越多,其太陽能電池的效率卻越差。
摘要(英) This study is on the preparation and application of zirconia/acrylate nanocomposite and lanthanide doped nano-zirconia as up-conversion phosphor.
Cubic zirconia nanoparticles (~6nm) have been prepared at high concentration under strong alkaline (pH: ~12) and low temperature (110oC) conditions. Their surface was subsequently modified with acetic acid and β-carboxyethyl acrylate to enable the dispersion in solvents comparable to acrylic resin. Accordant to TGA and 1H NMR analysis, there were 1.3 and 2.5 molecules of acetic acid and β-carboxyethyl acrylate, respectively, bonded on each nm2 of zirconia surface. The dual ligand modified zirconia nanoparticle could be dispersed into ester ether or similar hydrophobic solvents. The clear sol obtained can then be blended with a high refractive index acrylic monomer (OPPA), and coated onto a substrate. A transparent and non-crack film, with ~1.74 index and above 95% transmittance, could be prepared. This would be useful in the manufacture of brightness enhancement film or optical lens.
The same synthesis process could be extended to the preparation of lanthanide doped zirconia. A nano-size up-conversion phosphor was obtained after proper rinsing and calcination. ICP, XRD, TEM and PL were employed to characterize its composition, crystalline phase and size, as well as its up-conversion efficiency. It was found that the addition of lanthanide helped to stabilize the cubic crystalline phase. The highest up-conversion efficiency achieved was the one doped with 1.2/5.8/3.7 mol% of Er2O3/Yb2O3/Y2O3 and subjected to 900oC calcination. It emitted red (650nm) and green (544nm) lights under the excitation of 980nm NIR. A broad emission range from 350 to 650nm could be observed when pumped by 354nm UV light. Finally, we tried to incorporate it into the scattering layer of a DSSC with the hope to extend the effective wavelength range of solar conversion. The phosphor included scattering layer did show a better reflectivity than the virgin one, but there was no improvement in the equivalent quantum efficiency. The overall efficiency of solar conversion actually decreased with the amount of phosphor incorporated. Therefore, our proposal on the use of nano-size up-conversion phosphor in DSSC was disproved.
關鍵字(中) ★ 氧化鋯上轉換螢光劑
★ 氧化鋯奈米複合材料
關鍵字(英) ★ zirconia phosphor
★ zirconia nano-composite
論文目次 摘要 i
Abstract ii
Table of contents iv
List of figures vi
List of tables viii
Chapter 1: Introduction and Preliminary study 1
1-1 Background 1
1-2 Objectives 6
Chapter 2: Material preparation and characterization 7
2-1 Chemicals 7
2-2 Transparent nano-ZrO2 composite 8
2-2-1 Preparation of zirconia nanocrystal 8
2-2-2 Capping with Acetic acids 8
2-2-3 Ligand exchange with β-carboxyethyl acrylate (CEA) 9
2-2-4 Preparation nano-ZrO2/acrylate composite 9
2-3 Up-conversion phosphor and DSSC application 10
2-3-1 Preparation of Lanthanide doped ZrO2 phosphor 10
2-3-2 Preparation of DSSC with up-conversion phosphor reflection layer 11
2-4 Characterization methods: 13
Chapter 3: Results and discussion 16
3-1 zirconia/acrylate composite 16
3-1-1 Particle size distribution 16
3-1-2 Chemical structure of the surface moieties on zirconia 17
3-1-3 Viscosity of nano-composites 21
3-1-4 Filler and composite refractive index 23
3-1-5 Optical properties of the nano-composite film 24
3-2 The Lanthanide doped up-conversion phosphors 34
3-2-1 The doping efficiency 34
3-2-2 crystalline phase and morphology of doped zirconia 36
3-2-3 photo luminescence 37
3-2-4 The solar conversion efficiency of DSSC 43
Chapter 4: Conclusion 55
Reference 57
參考文獻 1. Zhang, Y.; Wang, X.; Liu, Y.; Song, S.; Liu, D., Highly transparent bulk PMMA/ZnO nanocomposites with bright visible luminescence and efficient UV-shielding capability. Journal of Materials Chemistry 2012, 22 (24), 11971-11977.
2. Hsiao Shu, C.; Chiang, H.-C.; Chien-Chao Tsiang, R.; Liu, T.-J.; Wu, J.-J., Synthesis of organic–inorganic hybrid polymeric nanocomposites for the hard coat application. Journal of Applied Polymer Science 2007, 103 (6), 3985-3993.
3. Tao, P.; Viswanath, A.; Li, Y.; Siegel, R. W.; Benicewicz, B. C.; Schadler, L. S., Bulk transparent epoxy nanocomposites filled with poly(glycidyl methacrylate) brush-grafted TiO2 nanoparticles. Polymer 2013, 54 (6), 1639-1646.
4. Guan, C.; Lü, C.-L.; Liu, Y.-F.; Yang, B., Preparation and characterization of high refractive index thin films of TiO2/epoxy resin nanocomposites. Journal of Applied Polymer Science 2006, 102 (2), 1631-1636.
5. Jones, C. L.; Goenner, E. S.; Olson, D. B.; Kolb, B. U.; Cowher, J. T., Light management films with zirconia particles. 3M innovative Properties Company, US patent 7833621, 2010.
6. Imai, Y.; Terahara, A.; Hakuta, Y.; Matsui, K.; Hayashi, H.; Ueno, N., Transparent poly(bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles. European Polymer Journal 2009, 45 (3), 630-638.
7. Chiang, A. S.-T., The Production of Dispersible Zirconia Nanocrystals: A Recent Patent Review. Recent Innovations in Chemical Engineering 2014, 7(2), 76-95.
8. Wang, S.-H.; Liu, J.-H.; Pai, C.-T.; Chen, C.-W.; Chung, P.-T.; Chiang, A. S.-T.; Chang, S.-J., Hansen solubility parameter analysis on the dispersion of zirconia nanocrystals. Journal of Colloid and Interface Science 2013, 407 (0), 140-147.
9. Li, Y.; Tao, P.; Viswanath, A.; Benicewicz, B. C.; Schadler, L. S., Bimodal Surface Ligand Engineering: The Key to Tunable Nanocomposites. Langmuir 2013, 29 (4), 1211-1220.
10. Tokumitsu, S., Surface-modified zirconia nanocrystal particle and method for producing same. 3M Innovative Properties Company, US patent 8759560, 2014.
11. Gotoh, Y.; Imakita, J.; Ohkoshi, Y.; Nagura, M., Preparation and Viscoelastic Behavior of Methacrylate Ionomers Crosslinked by Titanium (IV) and Zirconium (IV). Polym J 2000, 32 (10), 838-844.
12. Fernandes, N. J.; Koerner, H.; Giannelis, E. P.; Vaia, R. A., Hairy nanoparticle assemblies as one-component functional polymer nanocomposites: opportunities and challenges. MRS Communications 2013, 3 (01), 13-29.
13. Liang, L.; Liu, Y.; Bu, C.; Guo, K.; Sun, W.; Huang, N.; Peng, T.; Sebo, B.; Pan, M.; Liu, W.; Guo, S.; Zhao, X.-Z., Highly Uniform, Bifunctional Core/Double-Shell-Structured β-NaYF4:Er3+, Yb3+ @ SiO2@TiO2 Hexagonal Sub-microprisms for High-Performance Dye Sensitized Solar Cells. Advanced Materials 2013, 25 (15), 2174-2180.
14. Kim, Y. H.; Bae, J.-Y.; Jin, J.; Bae, B.-S., Sol–Gel Derived Transparent Zirconium-Phenyl Siloxane Hybrid for Robust High Refractive Index LED Encapsulant. ACS Applied Materials & Interfaces 2014, 6 (5), 3115-3121.
15. Walker, C. B.; Kolb, B. U.; Goenner, E. S.; Jones, V. W.; Wang, S.; Noyola, J. M., Durable high index nanocomposites for AR coatings. 3M Innovative Properties Company, US patent 7264872, 2007.
16. Qiao, Y.; Guo, H., Upconversion properties of Y2O3:Er films prepared by sol-gel method. Journal of Rare Earths 2009, 27 (3), 406-410.
17. Feng, W.; Han, C.; Li, F., Upconversion-Nanophosphor-Based Functional Nanocomposites. Advanced Materials 2013, 25 (37), 5287-5303.
18. Haase, M.; Schäfer, H., Upconverting Nanoparticles. Angewandte Chemie International Edition 2011, 50 (26), 5808-5829.
19. Lim, K.-S.; Lee, C.-W.; Kim, S.-T.; Seo, H. J.; Chong-Don, K., Infrared to visible up-conversion in Cr : Tm : Ho : YAG. Journal of Luminescence 2000, 87–89 (0), 1008-1010.
20. Meza, O.; Diaz-Torres, L. A.; Salas, P.; De la Rosa, E.; Solis, D., Color tunability of the upconversion emission in Er–Yb doped the wide band gap nanophosphors ZrO2 and Y2O3. Materials Science and Engineering: B 2010, 174 (1–3), 177-181.
21. Khan, A.; Yadav, R.; Mukhopadhya, P. K.; Singh, S.; Dwivedi, C.; Dutta, V.; Chawla, S., Core–shell nanophosphor with enhanced NIR–visible upconversion as spectrum modifier for enhancement of solar cell efficiency. J Nanopart Res 2011, 13 (12), 6837-6846.
22. Patra, A.; Friend, C. S.; Kapoor, R.; Prasad, P. N., Upconversion in Er3+:ZrO2 Nanocrystals. The Journal of Physical Chemistry B 2002, 106 (8), 1909-1912.
23. Qin, G.; Lu, J.; Bisson, J. F.; Feng, Y.; Ueda, K.-i.; Yagi, H.; Yanagitani, T., Upconversion luminescence of Er3+ in highly transparent YAG ceramics. Solid State Communications 2004, 132 (2), 103-106.
24. Patra, A.; Friend, C. S.; Kapoor, R.; Prasad, P. N., Effect of crystal nature on upconversion luminescence in Er3+:ZrO2 nanocrystals. Applied Physics Letters 2003, 83 (2), 284-286.
25. Chen, G. Y.; Liu, H. C.; Somesfalean, G.; Sheng, Y. Q.; Liang, H. J.; Zhang, Z. G.; Sun, Q.; Wang, F. P., Enhancement of the upconversion radiation in Y2O3:Er3+ nanocrystals by codoping with Li+ ions. Applied Physics Letters 2008, 92 (11), 113114 .
26. Kumar, D.; Sharma, M.; Pandey, O. P., Effect of co-doping metal ions (Li+, Na+ and K+) on the structural and photoluminescent properties of nano-sized Y2O3:Eu3+ synthesized by co-precipitation method. Optical Materials 2014, 36 (7), 1131-1138.
27. Hyppänen, I.; Hölsä, J.; Kankare, J.; Lastusaari, M.; Malkamäki, M.; Pihlgren, L., The effect of Y3+ co-doping on the persistent up-conversion luminescence of the ZrO2:Yb3+,Er3+ nanomaterials. Journal of Luminescence 2009, 129 (12), 1739-1743.
28. Smits, K.; Grigorjeva, L.; Millers, D.; Kundzins, K.; Ignatans, R.; Grabis, J.; Monty, C., Luminescence properties of zirconia nanocrystals prepared by solar physical vapor deposition. Optical Materials 2014, 37 (0), 251-256.
29. Lee, K.-M.; Hsu, Y.-C.; Ikegami, M.; Miyasaka, T.; Justin Thomas, K. R.; Lin, J. T.; Ho, K.-C., Co-sensitization promoted light harvesting for plastic dye-sensitized solar cells. Journal of Power Sources 2011, 196 (4), 2416-2421.
30. Wang, S. H., Synthesis and dispersion of ZrO2 nanocrystals. 中央大學 2014.
31. De Roo, J.; Van den Broeck, F.; De Keukeleere, K.; Martins, J. C.; Van Driessche, I.; Hens, Z., Unravelling the Surface Chemistry of Metal Oxide Nanocrystals, the Role of Acids and Bases. Journal of the American Chemical Society 2014, 136 (27), 9650-9657.
32. Cai, B.; Kaino, T.; Sugihara, O., Sulfonyl-containing polymer and its alumina nanocomposite with high Abbe number and high refractive index. Opt. Mater. Express 2015, 5 (5), 1210-1216.
33. Waseem, M., Surface charge properties of zirconium dioxide. Iranian Journal of Science and Technology (Sciences) 2012, 36 (4), 481-486.
34. Salas, P.; Angeles-Chavez, C.; Montoya, J.; De la Rosa, E.; Diaz-Torres, L.; Desirena, H.; Martı́nez, A.; Romero-Romo, M.; Morales, J., Synthesis, characterization and luminescence properties of ZrO2: Yb3+/Er3+ nanophosphor. Optical Materials 2005, 27 (7), 1295-1300.
35. Lauria, A.; Villa, I.; Fasoli, M.; Niederberger, M.; Vedda, A., Multifunctional Role of Rare Earth Doping in Optical Materials: Nonaqueous Sol–Gel Synthesis of Stabilized Cubic HfO2 Luminescent Nanoparticles. ACS Nano 2013, 7 (8), 7041-7052.
36. De la Rosa-Cruz, E.; Dıaz-Torres, L.; Rodrıguez-Rojas, R.; Meneses-Nava, M.; Barbosa-Garcıa, O.; Salas, P., Luminescence and visible upconversion in nanocrystalline ZrO2: Er3+. Applied physics letters 2003, 83 (24), 4903-4905.
37. Desirena, H.; De la Rosa, E.; Romero, V.; Castillo, J.; Díaz-Torres, L.; Oliva, J., Comparative study of the spectroscopic properties of Yb3+/Er3+ codoped tellurite glasses modified with R2O (R= Li, Na and K). Journal of Luminescence 2012, 132 (2), 391-397.
38. Pandey, O. P., Effect of co-doping metal ions (Li+, Na+ and K+) on the structural and photoluminescent properties of nano-sized Y2O3:Eu3+ synthesized by co-precipitation method. Optical Materials 2014, 36 (7), 1131-1138.
39. Solis, D.; De la Rosa, E.; Meza, O.; Diaz-Torres, L. A.; Salas, P.; Angeles-Chavez, C., Role of Yb3+ and Er3+ concentration on the tunability of green-yellow-red upconversion emission of codoped ZrO2:Yb3+–Er3+ nanocrystals. Journal of Applied Physics 2010, 108 (2), 023103.
40. Wang, X. X.; Zhao, J. L.; Du, P.; Guo, L. M.; Xu, X. W.; Tang, C. C., The photoluminescence properties of Er3+-doped ZrO2 nanotube arrays prepared by anodization. Materials Research Bulletin 2012, 47 (11), 3916-3919.
指導教授 蔣孝澈(Shiaw-Tseh Chiang) 審核日期 2015-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明