博碩士論文 102324056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.22.248.208
姓名 陳幸鴻(Sing-hong Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 藉由物理氣相沉積合成大面積且高結晶性的二硫化鉬薄膜
(Large Area and High Quality MoS2 Thin Film Synthesized by Physical Vapor Deposition)
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於石墨烯特別的二維結構和物理性質;例如:超高的載子遷移率,吸引了非常多人的注意,但因為沒有能帶間隙,限縮了在邏輯電路上的應用。而另一種二維材料:過鍍金屬二硫屬化物,在奈米級電子產品和光學應用上也表現出相當好的潛力,而二硫化鉬是其中一種被廣泛研究的材料。相較於石墨烯它更適合應用在高效能的電子元件上,因為它除了二維的結構外也擁有會隨的層數改變的能帶間隙。
  近年來有非常多的方法被提出來製造二硫化鉬薄膜,包括剝除法及化學氣相沉積法等,但要以這些方法製作出大面積並且連續的二硫化鉬薄膜並不容易,因此不適合大面積應用,在本論文中,我們提出了一個簡單且可擴展的兩步驟方法:先以超高真空濺鍍系統濺鍍二硫化鉬靶材在藍寶石基板上,接著藉由化學氣相沉積系統進行硫化反應,製作出不但連續且高度結晶性的二硫化鉬薄膜,也可以用濺鍍時間來控制二硫化鉬薄膜的層數,雖然受限於石英爐管的直徑只有1英吋大小,我們只能製作出4×1平方英寸大小的二硫化鉬薄膜,但如果能把爐管的直徑加大,那我們就能製作更大面積的二硫化鉬薄膜。我們也利用了許多分析來證明我們的薄膜擁有高結晶性,包括拉曼光譜分析、光激發螢光光譜分析、穿透式電子顯微鏡及X光光電子能譜儀分析,而我們製作出的雙層及多層的上閘極二硫化鉬薄膜電晶體,也具備合理的電性。透過降低硫化溫度,我們成功的改善了二硫化鉬薄膜的均勻性,也利用二次諧波產生驗證730°C是比1000°C更好的硫化溫度,而製作出來的雙層二硫化鉬薄膜電晶體的電性也大幅改善,且擁有開關比率104、次臨界擺幅873 mV/decade及載子遷移率0.0193 cm2/Vs,雖然在實現高效能的元件前還有很多問題要解決,但此研究在未來大面積二硫化鉬薄膜成長與應用奠定了良好的基礎。
摘要(英) Graphene has attracted much attention due to its unique two dimensional structure and physical properties, such as high carrier mobility. However, the gapless nature prohibits its application of logic circuits. Other two-dimensional layered nanomaterials, transition metal dichalcogenides(TMDs), such as MoS2, also show great potential in nanoelectronics and optical applications. MoS2 is superior than graphene to fabricate high-performance devices, because of its two-dimensional structure but also possesses thickness-dependent band gap.
  Recently, several methods have been proposed to prepare MoS2 atomically thin layers, including exfoliation and chemical vapor deposition, etc. However, it is challenging for these methods to produce large area and continuous MoS2 thin films, and thus not suitable for large area electronics. In this thesis, we present a simple and scalable two-step method for MoS2 synthesis. First, we used UHV-sputter system to deposit MoS2 thin films on sapphire substrates by using a MoS2 target, followed by sulfurization in hot-wall furnace. This method produces large area and continuous MoS2 thin films, and provides excellent controllability on the number of layers of MoS2 by sputtering time. The 4×1 in2 MoS2 thin films, demonstrated in this study was limited by the quartz tube furnace with 1-inch diameter. If we increase the diameter of the quartz tube, MoS2 thin films with even larger areas can be expected. Various spectroscopic and microscopic methods, including Raman spectroscopy、photoluminescence spectroscopy、high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy confirmed that our films are high quality. We also fabricated bilayer and mutiple-layer top-gate MoS2 thin film transistors with reasonable electrical characterizations. By decreasing the temperature of sulfurization, we further improved the uniformity of our films. The bilayer MoS2 thin film transistors also show superior characteristics with on/off current ratio of 104、subthreshold swing 873 mV/decade and electron mobility of 0.0193 cm2/Vs. Although there are still various problems to be solved before realizing high-performance devices, this research serves as a starting point for future large-area MoS2 applications.
關鍵字(中) ★ 二硫化鉬
★ 大面積
★ 高結晶性
★ 物理氣相沉積
關鍵字(英) ★ MoS2
★ Large area
★ High quality
★ Physical vapor deposition
論文目次 中文摘要……………………………………………………………………………………...Ⅰ
Abstract……………………………………………………………………………………….Ⅱ
誌謝…………………………………………………………………………………………...Ⅳ
論文目次……………………………………………………………………………………...Ⅴ
圖目錄………………………………………………………………………………………...Ⅶ
表目錄…………………………………………………………...……………………………Ⅸ
第一章、緒論……………..………………………………………………………………….1
1-1二維過渡金屬二硫屬化物薄膜電晶體簡介…………………………………………...1
1-2研究動機………………………………………………………………………………...4
第二章、二硫化鉬薄膜製程與分析…………………………………………………….7
2-1二硫化鉬薄膜製作……………………………………………………………………...7
2-2拉曼光譜及光激發螢光光譜分析…………………………….………………………10
2-3大面積證明…………………………………………………………………………….20
2-4穿透式電子顯微鏡(TEM)……………………………………………………………..22
2-5 X光光電子能譜儀(XPS)分析………………………………………………………...23
第三章、二硫化鉬薄膜電晶體製程…………………………………………….……..25
3-1金屬源極/汲極沉積……………………………………………………………………25
3-2定義主動區…………………………………………………………………………….29
3-3閘極介電層沉積……………………………………………………………………….30
3-4接觸窗蝕刻…………………………………………………………………………….32
3-5金屬閘極沉積………………………………………………………………………….33
3-6從薄膜沉積到電晶體完成流程圖…………………………………………………….34
第四章、二硫化鉬薄膜電晶體之電性………………………………………………..37
4-1載子遷移率萃取……………………………………………………………………….37
4-2電性討論………………………………………………………………………….38
第五章、結論與未來展望………………………………………………………………..46
參考文獻……………………………………………………………………….47
參考文獻 [1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, and I.V.Grigorieva, “Electric field effect in atomically thin carbon films”, Science, Oct 22, 2004.
[2] L. Colombo, “Graphene growth and device intergration”, IEEE, Vol. 101, No. 7, July, 2013.
[3] F. Schwierz, “Graphene transistors”, Nature Nanotech., Vol. 5, July, 2010.
[4] H. Wang, L. Tu, Y.-H. Lee, Y. Shi, A. Hsu, M.L. Chin, L.-J. Li, M. Dubey, L.K., and T. Palacios, “Inergrated circuits based on bilayer MoS2 transistors”, Nano Lett., Vol. 12, pp. 4674-4680, 2012
[5] B. Radisavljevic., “Single-layer MoS2 transistors”, Nature Nanotech., Vol. 6, March, 2011.
[6] S. Das, H.-Y. Chen, A.V. Penumatcha, and J. Appenzeller, “High performance multilayer MoS2 transistors with Scandium contacts”, Nano Lett. , Vol. 13, pp. 100-105, 2013.
[7] I. Popov, G. Seifert, and D. Tomanek, “Designing electircal contacts to MoS2 monolayers: A Computational Study”, Physical Review Lett., Vol. 108, pp. 156802 , 2012..
[8] H. Liu and P.D. Ye, “MoS2 dual-gate MOSFET with atomic-layer-depsoited Al2O3 as top-gate dielectric”, IEEE , Vol., No. 546, April, 2012.
[9] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2”, Nano Lett., Vol. 11, pp. 5111-5116, 2011.
[10] H. Wang, L. Tu, Y.-H. Lee, W. Fang, A. Hsu, P. Herring, M. Chin, M. Dubey, L.-J. Li, J.Kong, and T. Palacios, “Large-scale 2D electronics based on single-layer MoS2 grown by chemical vapor deposition”, IEDM, pp.88-91, 2012.
[11] S. Wang, Y. Rong, Y. Fan, M. Pacios, H. Bhaskaran, K. He, and J.H. Warner, “Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition”, Chem. Mater., Vol. 26, pp. 6371-6379, 2014.
[12] N. Choudhary, J. Park, J.Y. Hwang, and W. Choi, “Growth of large scale and thickness-modulated MoS2 nanosheets”, ACS Appl. Mater. Interfaces, Vol. 6, pp. 21215-21222, 2014.
[13] C.M. Orofeo, S. Suzuki, Y. Sekine, and H. Hibino, “Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films”, Appl. Phys. Lett., Vol. 105, pp. 083112, 2014.
[14] M.R. Laskar, L. Ma, S. Kannappan, P.S. Park, S. Krishnamoorthy, D.N. Nath, W. Lu, Y. Wu, and S. Rajan, “Large area single crystal (0001) oriented MoS2”, Appl. Phys. Lett., Vol. 102, pp. 252108, 2013.
[15] A. Tarasov, P.M. Campbell, M.-Y. Tsai, Z.R. Hesabi, J. Feirer, S. Graham, W. J. Ready, and E.M. Vogel, “Highly uniform trilayer molybdenum disulfide for wafer-scale device fabrication”, Adv. Funct. Mater., Vol. 24, pp. 6389-6400, 2014.
[16] H. Liu, K.A. Antwi, J. Ying, S. Chua, and D. Chi, “Towards large area and continuous MoS2 atomic layers via vapor-phase growth:thermal vapor sulfurization”, Nanotech., Vol. 25, pp. 405702, 2014.
[17] Y. Lee, J. Lee, H. Bark, I.-K. Oh, C.H. Ryu, Z. Lee, H. Kim, J.H. Cho, J.-H. Ahn, and C. Lee, “Synthesis of wafer-scale uniform molybdenum disulfide films with control over the layer number using a gas phase sulfur precursor”, Nanoscale, Vol.6, pp. 2821-2826, 2014.
[18] J.-U. Lee, J. Park, Y.-W. Son, and H. Cheong, “Anomalous excitonic reasonace Raman effects in few-layered MoS2”, Nanoscale, Vol. 7, pp. 3229-3236, 2015.
[19] L. Su, Y. Zhang, Y. Tu, and L. Cao, “Dependence of coupling of quasi 2-D MoS2 with substrates on substrate types, probed by temperature dependent Raman scattering”, Nanoscale, Vol. 6, pp. 4920-4927, 2014.
[20] Y.-C. Lin, W. Zhang, L.-K. Huang, Y.-H. Lee, C.-T. Liang, C.-W. Chu, and L.-J. Li, “Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization”, Nanoscale, Vol. 4, pp. 6637-6641, 2014.
[21] 張朝淵, 二硒化鎢薄膜電晶體之製程與分析, 交通大學, 碩士論文, 2014
[22] L.M. Malard, T.V. Alencar, A.P.M. Barboza, K.F. Mak, and A.M. Paula, “Observation of intense second harmonic generation from MoS2 atomic crystals”, Physical Review Lett., B 87, pp. 201401, 2013.
指導教授 周正堂、李耀仁、侯拓宏(Cheng-tang Chou Yao-Jen Lee Tuo-hung Hou) 審核日期 2015-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明