博碩士論文 102324015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.139.67.67
姓名 趙翊全(Yi-chuan Chao)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 研究大塊金屬玻璃複合材料之形變行為
(A Study of Deformation Behavior of a Bulk-metallic-glass Matrix Composite)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 金屬玻璃有高硬度、高強度、高楊氏模數與高彈性形變能力,也有良好的耐腐蝕性與耐磨耗性,但其在室溫條件下卻沒有延性,幾乎沒有塑性行為,根據文獻所提出的解決方式,將材料製成複合材料,能有效提升其塑性行為,材料才有更廣的應用範圍。
我們想要探討材料在形變過程中延展性的機制,有學者提出材料內部的枝晶(dendrite)的大小與枝晶間距離能有效影響剪切帶(shear band)的擴張與集中,在材料介面(晶相與非晶相的接面),也有學者利用模擬的方式佐證介面能有效的吸收應變能,但是材料內部的晶體,尚未有明確的解釋機制,本篇論文藉由不同的實驗,觀察材料在受力時其晶體微觀結構變化,去分析其影響的機制。
本實驗先由熱差分析儀量(DSC),分析不同形變程度,對熱性質的影響,說明內部結構的變化。接著用高能量X光繞射對材料量測,得到半高寬(FWHM)資訊。並藉由材料不同壓縮循環時半高寬變化,並對照Convolutional Multiple Whole Profile fitting (CMWP)所獲的微結構資訊,來解釋此現象。再利用高解析掃描穿透式電子顯微鏡影像(HR-TEM)、與分子動力模擬(Molecular dynamics)佐證我們建構的模型與解釋機制之正確性,進而了解影響材料內部晶體延展性的機制。
摘要(英) Metallic glass has plenty of advantages, including high hardness, strength, Young’s modulus, elasticity, and good corrosion and wear resistance. However, it becomes brittle under room temperature and nearly does not perform plastic deformation. Hence, introducing the crystal materials into composites can enhance the plasticity in order to provide a wider variety of applications.
To understand how to enhance the ductility of the material, some scholars have proposed that the size of the interior dendrites and the distance between each dendrite can affect the expansion and concentration of shear band, and some scholars have proved that the material interface, where the boundary between crystalline and amorphous phase meet, can absorb strain energy effectively by simulations. Although the above ideas have been proved, there is no clear explanation for the interior dendrites of materials. By observing the changes in microstructure of dendrites under stress in different experiments, we can analyze the effects caused by the changes.
To explain the changes in interior structure of material, the first experiment will be conducted to analyze the different levels of deformation and effects to heat by Differentiation Scanning Calorimetry (DSC). Next, High-energy X-ray Diffraction will be used to obtain the information of Full Width Half Maximum (FWHM). By means of changes of FWHM under different compression cycles, the phenomenon can be explained with the aid of comparisons of microstructure information by Convolutional Multiple Whole Profile fitting (CMWP). Then using of High Resolution Transmission Electronic Microscopy (HR-TEM) and Molecular dynamics, we can prove the accuracy of our built model and the explanations for the above mentioned phenomenon, therefore we can have a better understanding on mechanism of improving the ductility of the bulk metallic glass composite materials.
關鍵字(中) ★ 金屬玻璃
★ 分子動力模擬
關鍵字(英)
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1 材料簡介 1
1-2 研究背景 1
1-3 材料應用 2
1-4 研究動機……………………………………………………...2
第二章 文獻回顧 3
2-1 非晶質合金 5
2-3 鋯基非晶質合金介紹 7
2-4 非晶質合金複合材料製成 8
2-5 非晶質合金熱力學 9
2-5-1 非晶質合金平衡態 9
2-5-2 玻璃轉換溫度(Tg) 10
2-5-3 ΔTx值 11
2-6 分子動力學 11
2-6-1 分子動力學理論 11
2-6-2 勢能函數 12
2-6-3 週期性邊界 12
第三章 實驗方法 14
3-1 材料製備方法 14
3-2 熱性質分析 16
3-3 機械性能分析-即時壓縮測試與高能量X光繞射量測 17
3-4 微觀組織分析 19
3-4-1 高解析掃描穿透式電子顯微鏡觀察與繞射分析 19
3-4-2 能量散射光譜儀分析 19
3-4-3 卷積多繞射峰全譜分析 20
3-5 分子動力模擬 22
3-5-1 模擬軟體 22
3-5-2 材料模型 22
3-5-3 視覺化分析 23
第四章 實驗結果與討論 25
4-1 熱性質-DSC結果 25
4-2 繞射實驗與能量散射光譜儀實驗結果分析 27
4-2-1 繞射峰位置分析 27
4-2-2 以能量散射光譜儀實驗驗證核心與殼層模型 31
4-2-3 以晶格模數分析核心與殼層模型 34
4-3 卷積多繞射峰全譜分析.........................................................38
4-3-1 彈性形變Cycle1 38
4-3-2 塑性形變Cycle2 39
4-3-3 塑性形變後的再形變Cycle3 42
4-4 分子動力模擬分析 44
4-4-1 原子模型 44
4-4-2 以配位數分析複合材料模型 45
4-4-3 以中心對稱參數分析複合材料模型..........................46
第五章 結論 49
參考文獻 51
附錄 56
(一)CV…………………………………………………………………..56
(二)獎狀與得獎海報…………………………………………………...60
(三)Lammps script………………………………………………………64
(四)Molecular dynamics(MD)相關教學手冊………………………......68

參考文獻 1. Klement, W. and R. Willens, Non-crystalline structure in solidified gold–silicon alloys. 1960.
2. Demetriou, M.D., et al., A damage-tolerant glass. Nature materials, 2011. 10(2): p. 123-128.
3. Hays, C., C. Kim, and W.L. Johnson, Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Physical Review Letters, 2000. 84(13): p. 2901.
4. Fan, C., et al., Mechanical behavior of bulk amorphous alloys reinforced by ductile particles at cryogenic temperatures. Physical review letters, 2006. 96(14): p. 145506.
5. Lund, A.C. and C.A. Schuh, Topological and chemical arrangement of binary alloys during severe deformation. Journal of applied physics, 2004. 95(9): p. 4815-4822.
6. Duwez, P., Metastable phases obtained by rapid quenching from the liquid state. Progress in Solid state chemistry, 1967. 3: p. 377-406.
7. Chen, H. and D. Turnbull, Formation, stability and structure of palladium-silicon based alloy glasses. Acta metallurgica, 1969. 17(8): p. 1021-1031.
8. Chen, H., Thermodynamic considerations on the formation and stability of metallic glasses. Acta Metallurgica, 1974. 22(12): p. 1505-1511.
9. Chen, H., J. Krause, and E. Coleman, Elastic constants, hardness and their implications to flow properties of metallic glasses. Journal of Non-Crystalline Solids, 1975. 18(2): p. 157-171.
10. Inoue, A., et al., Ti-based amorphous alloys with a wide supercooled liquid region. Materials Letters, 1994. 19(3): p. 131-135.
11. Inoue, A., T. Zhang, and T. Masumoto, Glass-forming ability of alloys. Journal of non-crystalline solids, 1993. 156: p. 473-480.
12. Inoue, A., et al., High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta materialia, 2001. 49(14): p. 2645-2652.
13. Inoue, A., T. Zhang, and T. Masumoto, Zr–Al–Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Materials Transactions, JIM, 1990. 31(3): p. 177-183.
14. Inoue, A., et al., Mg–Cu–Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Materials Transactions, JIM, 1991. 32(7): p. 609-616.
15. Inoue, A., Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta materialia, 2000. 48(1): p. 279-306.
16. Fan, C., H. Choo, and P.K. Liaw, Influences of Ta, Nb, or Mo additions in Zr-based bulk metallic glasses on microstructure and thermal properties. Scripta materialia, 2005. 53(12): p. 1407-1410.
17. Li, J., et al., Significant plasticity enhancement of ZrCu-based bulk metallic glass composite dispersed by in situ and ex situ Ta particles. Materials Science and Engineering: A, 2012. 551: p. 249-254.
18. Ott, R., et al., Micromechanics of deformation of metallic-glass–matrix composites from in situ synchrotron strain measurements and finite element modeling. Acta materialia, 2005. 53(7): p. 1883-1893.
19. Jang, J.S., et al., A Ni-free Zr-based bulk metallic glass with remarkable plasticity. Journal of Alloys and Compounds, 2011. 509: p. S109-S114.
20. Chen, S.-w., 不同製程對鋯-銅-鋁非晶質合金內析出 ZrCu B2 相分布及其機械性質影響之研究. 2014.
21. Brantley, W.A., et al., X-ray diffraction studies of as-cast high-palladium alloys. Dental Materials, 1995. 11(3): p. 154-160.
22. Chandler, D. and J.K. Percus, Introduction to modern statistical mechanics. Physics Today, 2008. 41(12): p. 114-118.
23. Grubmüller, H., et al., Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Molecular Simulation, 1991. 6(1-3): p. 121-142.
24. Allen, M.P. and D.J. Tildesley, Computer simulation of liquids. 1989: Oxford university press.
25. Daw, M.S. and M.I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 1984. 29(12): p. 6443.
26. Frenkel, D. and B. Smit, Understanding molecular simulation: from algorithms to applications. Vol. 1. 2001: Academic press.
27. Qiao, J., et al., Micromechanisms of plastic deformation of a dendrite/Zr-based bulk-metallic-glass composite. Scripta Materialia, 2009. 61(11): p. 1087-1090.
28. Qiao, J.W., Y. Zhang, and P.K. Liaw, Tailoring Microstructures and Mechanical Properties of Zr‐Based Bulk Metallic Glass Matrix Composites by the Bridgman Solidification. Advanced Engineering Materials, 2008. 10(11): p. 1039-1042.
29. Szuecs, F., C. Kim, and W. Johnson, Mechanical properties of Zr 56.2 Ti 13.8 Nb 5.0 Cu 6.9 Ni 5.6 Be 12.5 ductile phase reinforced bulk metallic glass composite. Acta Materialia, 2001. 49(9): p. 1507-1513.
30. Ungár, T. and G. Tichy, The Effect of Dislocation Contrast on X‐Ray Line Profiles in Untextured Polycrystals. physica status solidi (a), 1999. 171(2): p. 425-434.
31. Ungár, T., et al., The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice. Journal of applied crystallography, 1999. 32(5): p. 992-1002.
32. Dragomir, I. and T. Ungár, The dislocations contrast factors of cubic crystals in the Zener constant range between zero and unity. Powder Diffraction, 2002. 17(02): p. 104-111.
33. Plimpton, S., Fast parallel algorithms for short-range molecular dynamics. Journal of computational physics, 1995. 117(1): p. 1-19.
34. Horstemeyer, M., M. Baskes, and S. Plimpton, Length scale and time scale effects on the plastic flow of fcc metals. Acta Materialia, 2001. 49(20): p. 4363-4374.
35. Landau, D.P. and K. Binder, A guide to Monte Carlo simulations in statistical physics. 2014: Cambridge university press.
36. Li, J., AtomEye: an efficient atomistic configuration viewer. Modelling and Simulation in Materials Science and Engineering, 2003. 11(2): p. 173.
37. Stukowski, A., Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 2010. 18(1): p. 015012.
38. Stukowski, A. and K. Albe, Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modelling and Simulation in Materials Science and Engineering, 2010. 18(8): p. 085001.
39. Stukowski, A., V.V. Bulatov, and A. Arsenlis, Automated identification and indexing of dislocations in crystal interfaces. Modelling and Simulation in Materials Science and Engineering, 2012. 20(8): p. 085007.
40. Henderson, A., J. Ahrens, and C. Law, The ParaView Guide. 2004: Kitware Clifton Park, NY.
41. Krämer, L., et al., Production of Bulk Metallic Glasses by Severe Plastic Deformation. Metals, 2015. 5(2): p. 720-729.
42. Verdier, M., et al., Dislocation densities and stored energy after cold rolling of Al-Mg alloys: investigations by resistivity and differential scanning calorimetry. Scripta materialia, 1997. 37(4): p. 449-454.
43. Yang, L., et al., Nanoscale solute partitioning in bulk metallic glasses. Advanced Materials, 2009. 21(3): p. 305-308.
44. 廖哲儀, 使用同步輻射X光與分子動力學模擬研究鋯基非晶質合金複合材料之塑性形變機制. 2013, 中央大學化材系.
45. Kühn, U., et al., ZrNbCuNiAl bulk metallic glass matrix composites containing dendritic bcc phase precipitates. Applied physics letters, 2002. 80(14): p. 2478-2480.
46. Suzuki, H., et al., Evaluation of compressive deformation behavior of Zr 55 Al 10 Ni 5 Cu 30 bulk metallic glass containing ZrC particles by synchrotron X-ray diffraction. Scripta Materialia, 2012. 66(10): p. 801-804.
47. Huang, E.-W., et al., Slip-system-related dislocation study from in-situ neutron measurements. Metallurgical and Materials Transactions A, 2008. 39(13): p. 3079-3088.
48. Northwood, D., I. London, and L. Bähen, Elastic constants of zirconium alloys. Journal of nuclear materials, 1975. 55(3): p. 299-310.
49. Wen, C., et al., Processing of biocompatible porous Ti and Mg. Scripta Materialia, 2001. 45(10): p. 1147-1153.
50. Antoine, C., M. Foley, and N. Dhanaraj, Physical Properties of Niobium and Specifications for Fabrication of Superconducting Cavities. 2011, Fermi National Accelerator Laboratory (FNAL), Batavia, IL.
51. Dolbow, J. and M. Gosz, Effect of out-of-plane properties of a polyimide film on the stress fields in microelectronic structures. Mechanics of materials, 1996. 23(4): p. 311-321.
52. Farraro, R. and R.B. Mclellan, Temperature dependence of the Young’s modulus and shear modulus of pure nickel, platinum, and molybdenum. Metallurgical Transactions A, 1977. 8(10): p. 1563-1565.
53. Narayan, R., et al., On the hardness and elastic modulus of bulk metallic glass matrix composites. Scripta Materialia, 2010. 63(7): p. 768-771.
54. Kelchner, C.L., S. Plimpton, and J. Hamilton, Dislocation nucleation and defect structure during surface indentation. Physical Review B, 1998. 58(17): p. 11085.






















指導教授 陳文逸(wen-yi chen) 審核日期 2015-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明