參考文獻 |
1. Klement, W. and R. Willens, Non-crystalline structure in solidified gold–silicon alloys. 1960.
2. Demetriou, M.D., et al., A damage-tolerant glass. Nature materials, 2011. 10(2): p. 123-128.
3. Hays, C., C. Kim, and W.L. Johnson, Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Physical Review Letters, 2000. 84(13): p. 2901.
4. Fan, C., et al., Mechanical behavior of bulk amorphous alloys reinforced by ductile particles at cryogenic temperatures. Physical review letters, 2006. 96(14): p. 145506.
5. Lund, A.C. and C.A. Schuh, Topological and chemical arrangement of binary alloys during severe deformation. Journal of applied physics, 2004. 95(9): p. 4815-4822.
6. Duwez, P., Metastable phases obtained by rapid quenching from the liquid state. Progress in Solid state chemistry, 1967. 3: p. 377-406.
7. Chen, H. and D. Turnbull, Formation, stability and structure of palladium-silicon based alloy glasses. Acta metallurgica, 1969. 17(8): p. 1021-1031.
8. Chen, H., Thermodynamic considerations on the formation and stability of metallic glasses. Acta Metallurgica, 1974. 22(12): p. 1505-1511.
9. Chen, H., J. Krause, and E. Coleman, Elastic constants, hardness and their implications to flow properties of metallic glasses. Journal of Non-Crystalline Solids, 1975. 18(2): p. 157-171.
10. Inoue, A., et al., Ti-based amorphous alloys with a wide supercooled liquid region. Materials Letters, 1994. 19(3): p. 131-135.
11. Inoue, A., T. Zhang, and T. Masumoto, Glass-forming ability of alloys. Journal of non-crystalline solids, 1993. 156: p. 473-480.
12. Inoue, A., et al., High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta materialia, 2001. 49(14): p. 2645-2652.
13. Inoue, A., T. Zhang, and T. Masumoto, Zr–Al–Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Materials Transactions, JIM, 1990. 31(3): p. 177-183.
14. Inoue, A., et al., Mg–Cu–Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Materials Transactions, JIM, 1991. 32(7): p. 609-616.
15. Inoue, A., Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta materialia, 2000. 48(1): p. 279-306.
16. Fan, C., H. Choo, and P.K. Liaw, Influences of Ta, Nb, or Mo additions in Zr-based bulk metallic glasses on microstructure and thermal properties. Scripta materialia, 2005. 53(12): p. 1407-1410.
17. Li, J., et al., Significant plasticity enhancement of ZrCu-based bulk metallic glass composite dispersed by in situ and ex situ Ta particles. Materials Science and Engineering: A, 2012. 551: p. 249-254.
18. Ott, R., et al., Micromechanics of deformation of metallic-glass–matrix composites from in situ synchrotron strain measurements and finite element modeling. Acta materialia, 2005. 53(7): p. 1883-1893.
19. Jang, J.S., et al., A Ni-free Zr-based bulk metallic glass with remarkable plasticity. Journal of Alloys and Compounds, 2011. 509: p. S109-S114.
20. Chen, S.-w., 不同製程對鋯-銅-鋁非晶質合金內析出 ZrCu B2 相分布及其機械性質影響之研究. 2014.
21. Brantley, W.A., et al., X-ray diffraction studies of as-cast high-palladium alloys. Dental Materials, 1995. 11(3): p. 154-160.
22. Chandler, D. and J.K. Percus, Introduction to modern statistical mechanics. Physics Today, 2008. 41(12): p. 114-118.
23. Grubmüller, H., et al., Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Molecular Simulation, 1991. 6(1-3): p. 121-142.
24. Allen, M.P. and D.J. Tildesley, Computer simulation of liquids. 1989: Oxford university press.
25. Daw, M.S. and M.I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 1984. 29(12): p. 6443.
26. Frenkel, D. and B. Smit, Understanding molecular simulation: from algorithms to applications. Vol. 1. 2001: Academic press.
27. Qiao, J., et al., Micromechanisms of plastic deformation of a dendrite/Zr-based bulk-metallic-glass composite. Scripta Materialia, 2009. 61(11): p. 1087-1090.
28. Qiao, J.W., Y. Zhang, and P.K. Liaw, Tailoring Microstructures and Mechanical Properties of Zr‐Based Bulk Metallic Glass Matrix Composites by the Bridgman Solidification. Advanced Engineering Materials, 2008. 10(11): p. 1039-1042.
29. Szuecs, F., C. Kim, and W. Johnson, Mechanical properties of Zr 56.2 Ti 13.8 Nb 5.0 Cu 6.9 Ni 5.6 Be 12.5 ductile phase reinforced bulk metallic glass composite. Acta Materialia, 2001. 49(9): p. 1507-1513.
30. Ungár, T. and G. Tichy, The Effect of Dislocation Contrast on X‐Ray Line Profiles in Untextured Polycrystals. physica status solidi (a), 1999. 171(2): p. 425-434.
31. Ungár, T., et al., The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice. Journal of applied crystallography, 1999. 32(5): p. 992-1002.
32. Dragomir, I. and T. Ungár, The dislocations contrast factors of cubic crystals in the Zener constant range between zero and unity. Powder Diffraction, 2002. 17(02): p. 104-111.
33. Plimpton, S., Fast parallel algorithms for short-range molecular dynamics. Journal of computational physics, 1995. 117(1): p. 1-19.
34. Horstemeyer, M., M. Baskes, and S. Plimpton, Length scale and time scale effects on the plastic flow of fcc metals. Acta Materialia, 2001. 49(20): p. 4363-4374.
35. Landau, D.P. and K. Binder, A guide to Monte Carlo simulations in statistical physics. 2014: Cambridge university press.
36. Li, J., AtomEye: an efficient atomistic configuration viewer. Modelling and Simulation in Materials Science and Engineering, 2003. 11(2): p. 173.
37. Stukowski, A., Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 2010. 18(1): p. 015012.
38. Stukowski, A. and K. Albe, Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modelling and Simulation in Materials Science and Engineering, 2010. 18(8): p. 085001.
39. Stukowski, A., V.V. Bulatov, and A. Arsenlis, Automated identification and indexing of dislocations in crystal interfaces. Modelling and Simulation in Materials Science and Engineering, 2012. 20(8): p. 085007.
40. Henderson, A., J. Ahrens, and C. Law, The ParaView Guide. 2004: Kitware Clifton Park, NY.
41. Krämer, L., et al., Production of Bulk Metallic Glasses by Severe Plastic Deformation. Metals, 2015. 5(2): p. 720-729.
42. Verdier, M., et al., Dislocation densities and stored energy after cold rolling of Al-Mg alloys: investigations by resistivity and differential scanning calorimetry. Scripta materialia, 1997. 37(4): p. 449-454.
43. Yang, L., et al., Nanoscale solute partitioning in bulk metallic glasses. Advanced Materials, 2009. 21(3): p. 305-308.
44. 廖哲儀, 使用同步輻射X光與分子動力學模擬研究鋯基非晶質合金複合材料之塑性形變機制. 2013, 中央大學化材系.
45. Kühn, U., et al., ZrNbCuNiAl bulk metallic glass matrix composites containing dendritic bcc phase precipitates. Applied physics letters, 2002. 80(14): p. 2478-2480.
46. Suzuki, H., et al., Evaluation of compressive deformation behavior of Zr 55 Al 10 Ni 5 Cu 30 bulk metallic glass containing ZrC particles by synchrotron X-ray diffraction. Scripta Materialia, 2012. 66(10): p. 801-804.
47. Huang, E.-W., et al., Slip-system-related dislocation study from in-situ neutron measurements. Metallurgical and Materials Transactions A, 2008. 39(13): p. 3079-3088.
48. Northwood, D., I. London, and L. Bähen, Elastic constants of zirconium alloys. Journal of nuclear materials, 1975. 55(3): p. 299-310.
49. Wen, C., et al., Processing of biocompatible porous Ti and Mg. Scripta Materialia, 2001. 45(10): p. 1147-1153.
50. Antoine, C., M. Foley, and N. Dhanaraj, Physical Properties of Niobium and Specifications for Fabrication of Superconducting Cavities. 2011, Fermi National Accelerator Laboratory (FNAL), Batavia, IL.
51. Dolbow, J. and M. Gosz, Effect of out-of-plane properties of a polyimide film on the stress fields in microelectronic structures. Mechanics of materials, 1996. 23(4): p. 311-321.
52. Farraro, R. and R.B. Mclellan, Temperature dependence of the Young’s modulus and shear modulus of pure nickel, platinum, and molybdenum. Metallurgical Transactions A, 1977. 8(10): p. 1563-1565.
53. Narayan, R., et al., On the hardness and elastic modulus of bulk metallic glass matrix composites. Scripta Materialia, 2010. 63(7): p. 768-771.
54. Kelchner, C.L., S. Plimpton, and J. Hamilton, Dislocation nucleation and defect structure during surface indentation. Physical Review B, 1998. 58(17): p. 11085.
|