博碩士論文 100283603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.144.154.208
姓名 蘇那吉(SURESHRAJU VEGIRAJU)  查詢紙本館藏   畢業系所 化學學系
論文名稱
(Synthesis and Characterization of Fused Thiophenes and Diketopyrrolopyrroles Containing Conjugated Small Molecules: Applications in Organic Electronics)
相關論文
★ Cycloiptycene分子之合成與自組裝行為之研究★ 含二噻吩蒽[3,2-b:2′,3′-d]噻吩單元之敏化染料太陽能電池
★ 以有機磷酸修飾電極表面功函數及對有機發光元件效率影響研究★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 具交聯結構之磺酸化聚馬來醯亞胺高分子質子傳導膜之開發與製備★ 有機薄膜電晶體材料苯三併環噻吩及苯四併環噻吩衍生物之開發
★ 有機薄膜電晶體高分子材料併環噻吩系列之開發★ 有機薄膜電晶體材料及可溶性有機薄膜電晶體材料衍生物之開發
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 具交聯結構之苯乙烯-馬來醯亞胺 接枝型高分子質子傳導膜之開發與製備
★ 有機薄膜電晶體材料苯三併環噻吩及可溶性聯噻吩衍生物之開發★ 可溶性有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 含benzotriazole 之D-π-A 共軛形光敏染料及其染料太陽能電池★ 有機薄膜電晶材料苯併環噻吩和可溶性硫醚噻吩衍生物之開發
★ 具咪唑鹽團聯高分子之陰離子傳導膜的開發與製備★ 可溶性有機薄膜電晶體材料三併環 及四併環噻吩衍生物之開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) π共軛雜環化合物在有機電子材料中具有很大的開發價值,其中又以pentacene具有良好的光電性質並在有機薄膜電晶體 (OTFT)中具有高的載子移動率。然而,pentacene高的HOMO能階與狹窄的能隙,使其在空氣中容易被氧化,成為其致命缺點。相較於pentacene,併環噻吩於一般環境中具有良好的穩定性、光電性質以及較大的能隙;而具剛性及平面的π共軛系統,使之成為有效傳遞載子的核心,是一個有潛力的有機半導體材料。此外,併環噻吩分子間的硫與硫原子具有強烈的分子間作用力,使分子更緊密堆疊,進而提升載子移動率。
在我的研究中,利用Stille與Suzuki耦合反應,合成出以併環噻吩為核心的有機半導體材料,並將之應用於有機薄膜電晶體 (OTFT)、有機光伏打電池 (OPV)以及雙光子吸收 (2PA)。最後利用UV-vis、DPV與TGA來探討分子的光化學、電化學性質以及熱穩定性;製作成薄膜後以AFM、GIXRD以及GIWAXS探討其分子排列規則度與堆疊性。
開發出以三併環噻吩 (DTT) 與雙三併環噻吩 (BDTT) 作為中心主體,與苯基及全氟苯環作為末端基團,合成出不對稱小分子 FPP-DTT 及FPP-BDTT ,並將此系列材料養成單晶,製備成單晶及薄膜場效電晶體元件,經測試後具有P-type場效性質,單晶場效電晶體元件載子移動率分別為0.74 cm2V−1s−1 及 0.73 cm2V−1s−1 ,薄膜場效電晶體元件載子移動率為 0.15 cm2V−1s−1 及 0.20 cm2V−1s−1 。
以具硫醚碳鏈之聯噻吩作為末端基團以三併環噻吩作為核心主體,開發出可溶性有機小分子 BDTT-BST,經由溶液製程製成元件,具有P-type場效性質,載子移動率可高達1.7 cm2V−1s−1 。利用全氟苯環、噻吩作為末端基團,分別與多併環噻吩 TTA、DTT與TT之中心共軛單元耦合,開發出分子DFPT-TTA、DFPT-DTT、DFPT-TT,將一系列材料製程元件,具有N-type場效性質,其中分子DFPT-TTA、DFPT-TT載子移動率分別可達 0.43 cm2V−1s−1及0.33 cm2V−1s−1。
以四併環噻吩 (TTA) 作為核心主體,吡咯并吡咯二酮 (DPP) 為末端基團,合成出分子 DDP-TTAR,並將此分子運用於有機薄膜電晶體 (OTFT) 及有機光伏打電池 (OPV)中,其中場效電晶體元件電洞遷移率為 0.1 cm2V−1s−1,光電轉換效率為 4.02%。另外,分子Bis4T-DPP,運用於有機光伏打電池,與P3HT及PC71BM進行混摻製程元件,其光電轉換效率可達4.87%。將吡咯并吡咯二酮 (DPP),於其兩端引入dicyanomethylene 基團,改變其分子整體之共振,開發出具有溶解度之N-type 醌型材料 DPPQ,經由溶液製程製成元件,其載子移動率可達 0.55 cm2V−1s−1。最後也將三併環噻吩 (DTT)運用於雙光子吸收 (2PA),其中分子 Bis(4T)-DTT,經由測試下擁有雙光子激發截面值為3000GM,因此多併環噻吩也可作為發光基團,未來可運用於雙光子吸收應用上。
摘要(英) Fused  conjugated ring compounds attracted considerable interest in organic electronics. Among them pentacene based small molecules have been studied in organic electronics due to their excellent electronic and optical properties and owing to its high OTFT performance. The high mobility of pentacene is due to high order in the crystalline film. However, pentacene has the disadvantage of being easily undergo photo-oxidation in air due to its high lying HOMO and narrow band gap. Compared with pentacene, fused thiophene based conjugated small molecules are emerged as a potential organic semiconducting materials due to their excellent optoelectronic properties and relatively higher ambient stability originating from larger band gaps in the crystal structures, their rigid and flat -conjugated frameworks make them the most versatile and effective molecular scaffolds for organic functional materials. Additionally fused thiophenes possesses extensive molecular conjugation and strong intermolecular S•••S interactions promotes close molecular packing lead to higher charge carrier mobilities.
In my research, we have designed and synthesized fused thiophene based organic semiconductors using Stille and Suzuki cross-coupling reactions in various architectures for organic thin film transistors (OTFT), organic photovoltaics (OPV) and two photon absorption (2PA). Also, includes the comparative study of the optical, electrochemical and thermal properties of these organic semiconductors. OTFT, OPV and 2PA characterizations of these compounds suggested that fused thiophene based organic semiconductors are promising new class of organic materials for organic electronics. Electrochemical properties were investigated using differential pulse voltammetry, optical properties were examined by UV-visible absorption spectroscopy and thermal stability was observed through the thermogravimetric analysis (TGA) curves. Thin film microstructure and film morphology were examined by X-ray diffraction, atomic force microscopy (AFM), grazing incidence X-ray diffraction (GIXRD) and grazing incidence wide-angle X-ray scattering (GIWAXS) to understand the relationships between molecular structure, film morphology/crystallinity, and device performance. The molecular structures of organic semiconductors and their molecular packing properties were determined by single-crystal X-ray diffraction.
Asymmetric phenyl and perfluorophenyl end-functionalized dithienothiophene (DTT) and bisdithienothiophene (BDTT)-based fused-thiophene derivatives gave high p-channel mobilities of 0.74 and 0.73 cm2V-1s-1, respectively for single-crystal transistors and exhibited decent p-channel characteristics with a carrier mobility as high as 0.15 and 0.20 cm2/Vs respectively for organic thin-film transistor. Thio-alkyl (SR) substituted bithiophene (BST)-based semiconductors, end-capped with dithienothiophen-2-yl (DTT) group derivatives exhibits excellent p-type OFETs performance with mobilities up to 1.7 cm2 V-1 s-1 for organic field effect transistors (OFETs). Fused-thiophene (TTA, DTT, TT) semiconductors, end-capped with diperfluorophenylthien-2-yl (DFPT) groups (DFPT-TTA, DFPT-DTT, and DFPT-TT) are synthesized and characterized for organic thin-film transistors (OTFTs), DFPT-TTA and DFPT-TT exhibit good n-type TFT performance, with mobilities up to 0.43 cm2V−1s−1 and 0.33 cm2V−1s−1, respectively. Diketopyrrolopyrrole (DPP) and fused tetrathienoacene (TTA) frameworks are synthesized and characterized for OTFT and organic photovoltaics (OPV) exhibit hole mobilities approaching 0.1 cm2V-1s-1 and OPV efficiencies (PCE) > 4% for DDPP-TTAR. Organic photovoltaic cells based on Bis4T-DPP:P3HT:PC71BM blends achieve power conversion efficiencies (PCE) of 4.87%. Diketopyrrolopyrrole (DPP)-containing quinoidal small molecules for n-type organic semiconductors in thin film transistors (TFTs) exhibits maximum electron mobility up to 0.55 cm2V−1s−1 by solution process. Fused-thiophene-based chromophores are developed and characterized for a two-photon absorption (2PA) study exhibits the strongest and the most widely dispersed 2PA cross-section value of up to 3000 GM for DTT based chromophore.
關鍵字(中) ★ 併環噻吩
★ 有機薄膜電晶體
★ 有機光伏打電池
★ 雙光子吸收
★ 小分子
關鍵字(英) ★ Fused thiophenes
★ Diketopyrrolopyrrole
★ Small molecules
★ Organic photovoltaics
★ Organic thin film transistors
論文目次 Table of contents
Abstract………………………………………………………………………………….……II
Acknowledgements…………………………………………………………..………….......VI
List of Figures…………………………………………………………………………..……XI
List of Schemes………………………………………………….........................................XIV
List of Tables…………………………………………………..............................................XV
Chapter 1. Introduction
1.1. Organic Semiconductors………………………………………………………………..….2
1.2. Fused thiophenes……………………………………………………………………….….7
1.3. Applications of organic semiconductors
1.3.1. Organic Thing film Transistors (OTFTs)…………………………………..………9
1.3.2. Organic Photovoltaics (OPVs)………………………...………………….……...13
1.3.3. Two Photon Absorption (2PA)……………………………………………………16
1.4. Motivation of Research..………………………………………………………………….17
1.5. Synthesis of fused thiophenes, DPP and other intermediates……………………………..18
1.6. Experimental section……………………………………………………………………..21
1.7. References………………………………………………………………………………..36
Chapter 2. Asymmetric Fused Thiophenes for Field-Effect Transistors: Crystal Structure-Film Microstructure-Transistor Performance Correlations
2.1. Abstract….………………………………………….……………………………………39
2.2. Introduction………………………………………………………………………………39
2.3. Results and discussion
2.3.1. Synthesis………..………………………………………………………………..42
2.3.2. Thermal and optical properties……………….......................................................44
2.3.3. Electrochemical properties…………………………………..…………………...45
2.4. Single crystal analyses……………………………………………………………………47
2.5. Computational details
2.5.1. Theoretical calculation and single-crystal transistor characteristics………...….52
2.6. Device fabrication and characterization ……………………………………………….....53
2.6.1. Organic thin film transistor fabrication and characterization …………………..54
2.7. Thin film microstructure and morphology………………………………………………..55
2.8. Experimental details……………………………………………………………………...59
2.9. Conclusion………………………………………………………………………………..63
2.10. References………………………………………………………………………………65
Chapter 3 Diperfluorophenyl Fused Thiophene Semiconductors for n-Type Organic Thin-Film Transistors (OTFTs)
3.1. Abstract…………………………………………………………………………………..70
3.2. Introduction………………………………………………………………………………70
3.3. Synthesis…………………….……………………………………………………………72
3.4. Optical properties……………………………...…………………………………………73
3.5. Electrochemical properties………………….…………....................................................75
3.6. Single crystal structure analysis………………………………………………………….76
3.7. Semiconductor thin film growth………………………………………………………….80
3.8. GIWZXS analysis of semiconductor thin films…………………………………………..80
3.9. Optical absorption spectra of compounds thin films………………………………..…….82
3.10. OTFT characterization and measurements………………………………………………85
3.11. Film morphology and electronic structure………………………………………………90
3.12. Experimental……………………………………………………………………………94
3.13. Conclusion……………………………...........................................................................99
3.14. References……………………………………………………………………………...99
Chapter 4 High Performance Solution-Processable Thio-Alkyl Bithiophene (BST) based Small Molecules for Organic Field Effect Transistors
4.1. Abstract………...………………………………………………………………………..106
4.2. Introduction……………………………………………………………………………..106
4.3 Synthesis……….…………………………..……………………………………….……107
4.4. Optical properties…………………………..…………………………………………...109
4.5. Electrochemical properties…………………...…………………………………………110
4.6. Single crystal analysis…………………………...………………………………………111
4.7. DFT analysis…………………………………………………………………………….112
4.8. OFET device fabrication and measurement………..……………………………………114
4.9. GIXRD analysis…………………………………………………………………………118
4.10 Experimentals………………………………………..…………………………………123
4.11. Conclusion………………………………………………..……………………………130
4.12. References…………………………………………………..…………………………130
Chapter 5 Diketopyrrolopyrrole (DPP) Functionalized Tetrathienothio-phene (TTA) Small Molecules for Organic Thin Film Transistors and Organic Photovoltaic Cells
5.1. Abstract…...……………………………………………………………………...……..132
5.2. Introduction……….……………………………………………………………...……..132
5.3. Results and discussion
5.3.1. Synthesis…………………………………………………………….………….136
5.3.2. Thermal, Optical and electrochemical properties……………………………….137
5.3.3. Film morphology and charge transport properties………....................................141
5.3.4. Bulk heterojunction film properties and OSC fabrication………………….…..145
5.4. Experimental…………………………………………………….……………………...152
5.5. Conclusion……………………………………………………………………………...153
5.6. References………………………………………………………………………………154
5.7. Systematic study of Diketopyrrolopyrrole (DPP) and Tetrathieno-thiophene (TTA) based Small Molecules for Organic Photovoltaics
5.7.1. Abstract…………………………………………………………………….…159
5.7.2. Introduction………………………………………………………………..…159
5.7.3. Results and discussion………………………………………………………..161
5.7.4. OSC fabrication ………………………………………………………..…….164
5.7.5. Experimentals………………………………………………………………...166
Chapter 6 Synthesis and Characterization of Novel Symmetrical Two Photon Chromophores Derived from Bis(triphenylamino- tetrathienoacenyl) and Fused-thiophene Units
6.1. Abstract…………………………….……………………………..…………………….171
6.2. Introduction…..….……………………………………………………………………...171
6.3. Results and discussion………………………………………………………………….173
6.4. Thermal and linear optical properties……..……………………………………………175
6.5. Electrochemical characterization…………………………..…………………………...177
6.6. Electronic structure analysis……………………………………………………………178
6.7. Two photon absorption………………………………………………………………….179
6.8. Experimental section……………………………………………………………………183
6.9. Conclusion……………………………………………………………………………...186
6.10. References……………………………………………………………………………..187
Publications………………………………………………….………………………………192






List of Figures
Figure 1.1. Chemical structures of the most studied organic semiconductors………..…..…….5
Figure 1.2. Chemical structures of conjugated polymers…………………………….………...7
Figure 1.3. Chemical structures of the most studied fused thiophene based materials………....8
Figure 1.4 Schematic representation of OTFT geometries………………………………..….10
Figure 1.5 Typical OSC devices based on D-A heterojunction architectures…………..……14
Figure 1.6 Current–voltage (J–V) characteristics of a typical solar cell…………………...….15
Figure 1.7. Optical setup for 2PEF-related experiments…………….……………………….17
Figure 2.1. Optical spectra of DTT/BDTT derivatives …………………………….…44
Figure 2.2. HOMO and LUMO energy levels of DTT/BDTT semiconductors ………46
Figure 2.3. Crystal structure of FPP-DTT ….……………………………..………….48
Figure 2.4. Crystal structure of FPP-BDTT ………...…….………………………………...49
Figure 2.5. Crystal structure of DP-DTT …………………………………………………...50
Figure 2.6. Crystal structure of DP-BDTT ………………..………………………………...51
Figure 2.7. Transfer and output characteristics……………….……………………….53
Figure 2.8. AFM images of films …………………………….……………………….56
Figure 2.9. X-ray Diffraction pattern of thin films ...…………………………….……58
Figure 2.10. X-ray Diffraction pattern of thin films on various substrates..…...……….……59
Figure 3.1. Optical spectra …………………………………………………………………..73
Figure 3.2. Electrochemically derived HOMO and LUMO energy levels …………...……..76
Figure 3.3. The single-crystal structure of DFPT-TTA ……………………………………...77
Figure 3.4. Single-crystal structure of DFPT-DTT ………………………………...………..79
Figure 3.5. Single-crystal structure of DFPT-TT ………………………..…………....……..79
Figure 3.6. Comparison of GIWAXS data for DFPT and DFP thin films …………………...81
Figure 3.7. Optical spectra comparison…………………………………………………..…..84
Figure 3.8. Transfer and output plots of OTFT devices ……………………………...……...88
Figure 3.9. Film morphology of DFPT-TTA films …………………..…………..…………..91
Figure 3.10. film morphology of DFPT-DTT films………………………………..…...……92
Figure 3.11. film morphology of DFPT-TT films…………...………..……………..……….92
Figure 3.12. HOMO-LUMO energy diagram………………………………………..……....93
Figure 4.1 Chemical structures of reported alkoxy substituted polymers .……...………….107
Figure 4.2. Synthetic routes of BST and Chemical structures...............................................108
Figure 4.3. TGA and DSC curves………... ….……………………………..…….…109
Figure 4.4. Optical absorption and HOMO/LUMO....…….……………………………….109
Figure 4.5. DPV curves………………… ………………………………………………….110
Figure 4.6. Single crystal structures……………………………………………..….………111
Figure 4.7. Crystal structures ……………….…………………..………….….……112
Figure 4.8. DFT-derived molecular orbital contours.…………………………..……113
Figure 4.9. Structural simulation………………......……………………………...…113
Figure 4.10. OFETs device architecture ……………………………………………………115
Figure 4.11. Solution-shearing method .…………………..………………..….……116
Figure 4.12. Optical microscope image.………………………………………..……117
Figure 4.13. Optical microscope image ……......………………………….……...…118
Figure 4.14. GIXRD and TEM measurement setup………………………………….118
Figure 4.15. GIXRD pattern of 1 ……......………………………...….…………..…119
Figure 4.16. GIXRD pattern of 2…………………………………………….………122
Figure 4.17. Packing structures transformation between 2 and 1.………..………..…123
Figure 4.18. Simulated lateral dimension width of 1………………………..………123
Figure 5.1. TGA and DSC analysis ………………..……………………………………...…137
Figure 5.2. Optical spectra …………………………………………………………………138
Figure 5.3. DPV redox spectra...............................................................................................139
Figure 5.3a. Energetic alignment of molecules 1 and 2. …………………..……………….140
Figure 5.3b. DFT-derived molecular orbital contours …………………………………...….140
Figure 5.4. Film morphology for semiconductors 1 and 2 …………………...…………….142
Figure 5.5. OTFT characteristics of semiconductors 1 and 2................................................144
Figure 5.6. GIXRD patterns of 1 and 2 …………………………………………………….146
Figure 5.7. Inverted OSC device performance …………………………..…………..…...…147
Figure 5.8. Two-dimensional (2D) grazing incidence wide-angle X-ray scattering ……….149
Figure 5.9. TEM and tapping-mode AFM (inset) images……………………………..……150
Figure 5.10. Typical current density-electric field semilogarithmic plots………………….151
Figure 5.11. Chemical structures of 1-5…………………………..…………..………..…...161
Figure 5.12. Optical absorption spectra…………………………………………………….163
Figure 5.13. Electrochemical data of 1-5 …………………………………………………..164
Figure 6.1. Linear absorption and fluorescence spectra …………………….………….....…176
Figure 6.2. Energetic alignment of molecules 1-4. …………..…………………………….178
Figure 6.3. Degenerate two-photon absorption spectra of 1-4……………….......................181
Figure 6.4. two-photon excited up-conversion spectra of fluorophores.……...……………182
Figure 6.5. Optical setup for 2PEF-related experiments……................................................183









List of schemes
Scheme 1.1. Synthesis of Tetrathienoacene TTAR……………………..…………….………19
Scheme 1.2. Synthesis of DPP and DPP′……………………………………..………………20
Scheme 1.3. Synthesis of Tetrathienoacene TTA……………………...…………………..…20
Scheme 1.4. Synthesis of DTT……………………………………………………………….21
Scheme 1.5. Synthesis of tin compounds and other intermediates ……………….………….21
Scheme 2.1. Examples of fused oligothiophene semiconductors ……………………………41
Scheme 2.2. Chemical structures of the dithienothiophene derivatives ……………..………42
Scheme 2.3. Synthesis of compounds 1-4……………………………………………..…..…43
Scheme 3.1. Examples of n-channel organic semiconductors ………………………….……71
Scheme 3.2. Chemical structures of DFPT-functionalized fused-thiophenes …………….…72
Scheme 3.3. The synthesis of DFPT derivatives …………………………………………….72
Scheme 4.1. Synthesis of 1-3……………………………………………………….….……127
Scheme 5.1. Examples of DPP and fused thiophenes ……………………………..………..134
Scheme 5.2. Synthesis of semiconductors 1 and 2 …………………………………………136
Scheme 5.3. Synthesis of semiconductors 5 and 6………………………………………….137
Scheme 5.4. Synthesis of mono brominated DPPs …………………………………………162
Scheme 5.5. Synthesis of semiconductors 1-5 ……………..……………………………….162
Scheme 6.1. Molecular structures of the studied model chromophores ……..…..…………174
Scheme 6.2. Synthetic route to the target chromophores 1-4 …………………...….………175





List of Tables
Table 2.1. Thermal, optical, and electrochemical properties ………………..………...45
Table 2.2. Single-Crystal Transistor Characteristics …………………………….…………..53
Table 2.3. TFT device performances …………………...……………….……………………55
Table 2.4. Summary of single-crystal data……………………………………. ……………. 64
Table 2.5. Electronic coupling and mobilities……………………………………….………. 65
Table 3.1. Thermal, optical, and electrochemical properties ……….…………….…...74
Table 3.2. Summary of single-crystal cell parameters …………………………………...…..77
Table 3.3. Single-crystal parameters and thin-film transistor electron mobilities……………. 77
Table 3.4. Summary of UV-Vis absorption spectra ……………………………..….…83
Table 3.5. TFT device performance parameters of DFPT-TTA …………………..…...……. 87
Table 3.6. TFT device performance of DFPT-DTT after 70 days ……………………...……. 90
Table 4.1. Thermal, optical, and electrochemical properties ……….………….…….110
Table 4.2. OFETs Performance of 1 - 3 ………………………………………………….…117
Table 5.1. Thermal, optical, and electrochemical properties ………………...…..…..140
Table 5.2. TFT performance metrics …………………………………………………....….143
Table 5.3. Summary of organic solar cell performance metrics …………………..…………147
Table 5.4. Thermal, optical, and electrochemical properties ………………...…..…..164
Table 5.3. Organic solar cell performance metrics ………………………………..…………166
Table 6.1. Thermal, optical, and electrochemical properties ………………...……....177
Table 6.2. Photophysical properties of 1-4 ……………………………………………...….179
參考文獻 Chapter-1
1.Facchetti, A. Mater. Today 2007, 10, 28.
2. Arias, A. C; Mackenzie, J. D; McCulloch, I; Rivnay, J; Salleo, A. Chem. Rev. 2010,110,
3. Dimitrakopoulos CD, Malenfant PRL Adv. Mater. 2002, 14, 99.
4. Bao, Z; Locklin, J (2007) Organic field effect transistors (ed. Group, C. P. T. a. F.)
5. Roberts, M. E; Sokolov, A. N; Bao, Z. N. J Mater Chem. 2009, 19:3351–3363.
6. Bettinger, C. J; Bao, Z. A. Adv Mater. 2010, 22:651.
7. Garnier, F.; Hajlaoui, R.; Yassar, A.; Srivastava, P. Science 1994, 265, 1684.
8. Kobayashi, S; Takenobu, T; Mori, S; Fujiwara, A and Iwasa. Y. Appl. Phys. Lett. 2003, 82, 4581.
9. Pisula, W; Menon, A; Stepputat, M; Lieberwirth, I; Kolb, U; Tracz, A; Sirringhaus, H; Pakula,T and Mullen, K. Adv. Mater., 2005, 17, 684.
0. Da Silva Filho, D. A.; Kim, E. G.; Bre´das, J. L. Adv. Mater. 2005, 17, 1072.
1. Menard, E.; Podzorov, V.; Hur, S.-H.; Gaur, A.; Gershenson, M. E.; Rogers, J. A. Adv. Mater. 2004, 16, 2097.
2. Van der Poll, T. S.; Love, J. A.; Nguyen, T. Q.; Bazan, G. C. Adv. Mater. 2012, 24, 3646–3649.
3. Wang, D. H; Kyaw, A. K. K; Gupta, V; Bazan, G. C and Heeger, A. J. Advanced Energy Materials 2013, 3, 1161.
4. Liu, Y; Wang, Y; Wu, Y. P; Liu, Y. Q; Xi, H. X; Wang, L. M; Qiu, W. F; Lu, K; Du, C. Y and Yu, G. Adv. Funct. Mater., 2009, 19, 772.
5. Sun, Y. M; Ma, Y. Q; Liu, Y. Q; Lin, Y. Y; Wang, Z. Y; Wang, Y; Di, C. A; Xiao, K; Chen, X. M; Qiu, W. F; Zhang, B; Yu, G; Hu, W. P and Zhu, D. B. Adv. Funct. Mater., 2006, 16, 426.
6. Yuan, Y; Giri, G; Ayzner, A. L; Zoombelt, A. P; Mannsfeld, S. C. B; Chen, J; Nordlund, D; Toney, M. F; Huang, J and Bao, Z. Nature Communications.2014, 5, 3005.
7. Yamamoto, T and Takimiya, K. J. Am. Chem. Soc., 2007, 129, 2224.
8. Gao, J. H; Li, R. J; Li, L. Q; Meng, D; Jiang, H; Li, H. X and Hu, W. P. Adv. Mater., 2007, 19, 3008.
9. McCulloch, I; Heeney, M; Bailey, C; Genevicius, K; MacDonald, I; Shkunov, M; Sparrowe, D; Tierney, S; Wagner, S; Zhang, W; Chabinyc, M. L; Kline, R.J; McGehee, M. D and Toney, M. F. Nat. Mater., 2006, 5, 328.
20. McCulloch, I; Heeney, M; Chabinyc, M. L; DeLongchamp, D; Kline, R. J; Colle, M; Duffy, W; Fischer, D; Gundlach, D; Hamadani, B; Hamilton, R; Richter, L; Salleo, A; Shkunov, M; Sparrowe, D; Tierney, S and Zhang, W. Adv. Mater., 2009, 21, 1091.
2 . Fong, H. H; Pozdin, V. A; Amassian, A; Malliaras, G. G; Smilgies, D. M; He, M. Q; Gasper, S; Zhang, F. and Sorensen, M. J. Am. Chem. Soc., 2008, 130, 13202.
22. Gelinck, G. H.; Huitema, H. E. A.; Van Veenendaal, E.; Cantatore, E.;
Schrijnemakers, L.; Van der Putten, J.; Geuns, T. C. T.; Beenhakkers, M.;
Giesbers, J. B.; Huisman, B. H.; Meijer, E. J.; Benito, E. M.; Touwslager, F. J.;
Marsman, A. W.; Van Rens, B. J. E.; De Leeuw, D. M. Nat. Mater. 2004, 3, 106.
23. Roberts, M. E.; Sokolov, A. N.; Bao, Z. N. J. Mater. Chem. 2009, 19, 3351.
24. Smits, E. C. P.; Mathijssen, S. G. J.; van Hal, P. A.; Setayesh, S.; Geuns, T. C. T.; Mutsaers, K.; Cantatore, E.; Wondergem, H. J.; Werzer, O.; Resel, R.; Kemerink, M.; Kirchmeyer, S.; Muzafarov, A. M.; Ponomarenko, S. A.; de Boer, B.; Blom, P. W. M.; de Leeuw, D. M. Nature 2008, 455, 956.
25. Murphy, A. R and Fre´chet, J. M. J. Chemical. Reviews. 2007, Vol. 107, No. 4 1069
26. Garnier, F; Yassar, A; Hajlaoui, R; Horowitz, G; Deloffre, F; Servet, B; Ries, S; Alnot, P. J. Am. Chem. Soc. 1993, 115, 8716
27. Laquindanum, J. G; Katz, H. E; Lovinger, A. J. J. Am. Chem. Soc. 1998, 120, 664

Chapter-2
1. (a) H. Yan, Z. H. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, M. Kastler, A. Facchetti, Nature, 2009, 457, 679; (b) C. Kim, A. Facchetti, T. J. Marks, Science, 2007, 318, 76; (c) B. A. Jones, A. Facchetti, M. R. Wasielewski, T. J. Marks, J. Am. Chem. Soc., 2007, 129, 15259; (d) H. Usta, C. Kim, Z. Wang, S. Lu, H. Huang, A. Facchetti, T. J. Marks, J. Mater. Chem., 2012, 22, 4459; (e) H. Usta, M. D. Yilmaz, A.-J. Avestro, D. Boudinet, M. Denti, W. Zhao, J. F. Stoddart, A. Facchetti, Adv. Mater., 2013, 25, 4327; (f) P. Wolfer, M. L. Santarelli, L. Vaccaro, L. Yu, T. D. Anthopoulos, P. Smith, N. Stingelin, A. Marrocchi, Org. Electron., 2011, 12, 1886.
2. (a) O. Knopfmacher, M. L. Hammock, A. L. Appleton, G. Schwartz, J. Mei, T. Lei, J. Pei, Z. Bao, Nat. Commun., 2014, 5, 2954; (b) Y. Diao, B. C.-K. Tee, G. Giri, J. Xu, D. H. Kim, H. A. Becerril, R. M. Stoltenberg, T. H. Lee, G. Xue, S. C. B. Mannsfeld, Z. Bao, Nat. Mater., 2013, 12, 665; (c) M. L. Tang, S. C. B. Mannsfeld, Y. S. Sun, H. A. Becerril, Z. Bao, J. Am. Chem. Soc., 2009, 131, 882; (d) D. Khim, H. Han, K.-J. Baeg, J. Kim, S.-W. Kwak, D.-Y. Kim, Y.-Y. Noh, Adv. Mater., 2013, 25, 4302; (e) M. Seri, A. Marrocchi, D. Bagnis, R. Ponce, A. Taticchi, T. J. Marks, A. Facchetti, Adv. Mater., 2011, 23, 3827.
3. (a) P. J. Diemer, C. R. Lyle, Y. Mei, C. Sutton, M. M. Payne, J. E. Anthony, V. Coropceanu, J.-L. Bredas, O. D. Jurchescu, Adv. Mater., 2013, 25, 6956; (b) N. Shin, J. Kang, L. J. Richter, V. M. Prabhu, R. J. Kline, D. A. Fischer, D. M. Delongchamp, M. F. Toney, S. K. Satija, D. J. Gundlach, B. Purushothaman, J. E. Anthony, D. Y. Yoon, Adv. Funct. Mater., 2013, 23, 366; (c) S. Subramanian, S. K. Park, S. R. Parkin, V. Podzorov, T. N. Jackson, J. E. Anthony, J. Am. Chem. Soc., 2008, 130, 2706; (d) J. E. Anthony, Chem. Rev., 2006, 106, 5028; (e) J. Roncali, P. Leriche, P. Blanchard, Adv. Mater., 2014, 26, 3821.
4. (a) Y. Liu, Y. Liu, X. Zhan, Macromol. Chem. Phys., 2011, 212, 428; (b) Y. Mei, M. A. Loth, M. Payne, W. Zhang, J. Smith, C. S. Day, S. R. Parkin, M. Heeney, I. McCulloch, T. D. Anthopoulos, J. E. Anthony, O. D. Jurchescu, Adv. Mater., 2013, 25, 4352; (c) Y. Liu, Y. Wang, W. P. Wu, Y. Q. Liu, H. X. Xi, L. M. Wang, W. F. Qiu, K. Lu, C. Y. Du, G. Yu, Adv. Funct. Mater., 2009, 19, 772; (d) H. H. Fong, V. A. Pozdin, A. Amassian, G. G. Malliaras, D. M. Smilgies, M. Q. He, S. Gasper, F. Zhang, M. Sorensen, J. Am. Chem. Soc., 2008, 130, 13202; (e) F. Zhang, Y. Hu, T. Schuettfort, C.-A. Di, X. Gao, C. R. McNeill, L. Thomsen, S. C. B. Mannsfeld, W. Yuan, H. Sirringhaus, D. Zhu, J. Am. Chem. Soc., 2013, 135, 2338.
5. W. Wu, Y. Liu, D. Zhu, Chem. Soc. Rev., 2010, 39, 1489.
6. (a) K. Takiyama, S. Shinamura, I. Osaka, E. Miyazaki, Adv. Mater., 2011, 23, 4347; (b) L. Tan, L. Zhang, X. Jiang, X. D. Yang, L. J. Wang, Z. Wang, L. Q. Li, W. P. Hu, Z. G. Shuai, L. Li, D. B. Zhu, Adv. Funct. Mater., 2009, 19, 272; (c) Y. Liu, C. A. Di, C. Y. Du, Y. Q. Liu, K. Lu, W. F. Qiu, G. Yu, Chem.-Eur. J., 2010, 16, 2231; (d) T. Mori, T. Nishimura, T. Yamamoto, I. Doi, E. Miyazaki, I. Osaka, K. Takimiya, J. Am. Chem. Soc., 2013, 135, 13900.
7 (a) Y. Sun, Y. Ma, Y. Liu, Y. Lin, Z. Wang, Y. Wang, C. Di, K. Xiao, X. Chen, W. Qiu, B. Zhang, G. Yu, W. Hu, D. B. Zhu, Adv. Funct. Mater., 2006, 16, 426; (b) Y. Liu, Y. Wang, W. Wu, Y. Liu, H. Xi, L. Wang, W. Qui, K. Lu, C. Du and G. Yu, Adv. Funct. Mater., 2009, 19, 772; (c) J. Gao, R. Li, L. Li, Q. Meng, H. Jiang, H. Li, W. Hu, Adv. Mater., 2007, 19, 3008; (d) J. Huang, H. Luo, L. Wang, Y. Guo, W. Zhang, H. Chen, M. Zhu, Y. Liu, G. Yu, Org. Lett., 2012, 14, 292; (e) K. Takimiya, I. Osaka, T. Mori, M. Nakano, Acc. Chem. Res., 2014, 47, 1493.
8 (a) H. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda, H. Kuwabara, T. Yui J. Am. Chem. Soc., 2007, 129, 15732; (b) K. Takimiya, H. Ebata, K. Sakamoto, T. Izawa, T. Otsubo, Y. Kunugi, J. Am. Chem. Soc., 2006, 128, 12604; (c) K. Takimiya, Y. Kunugi, Y. Konda, H. Ebata, Y. Toyoshima, T. Otsubo, J. Am. Chem. Soc., 2006, 128, 3044; (d) K. Takimiya, Y. Kunugi, Y. Konda, N. Niihara, T. Otsubo, J. Am. Chem. Soc., 2004, 126, 5084; (e) Y. Miyata, E. Yoshikawa, T. Minari, K. Tsukagoshi, S. Yamaguchi, J. Mater. Chem., 2012, 22, 7715; (f) L. Zhang, L. Tan, Z. Wang, W. Hu, D. Zhu, Chem. Mater., 2009, 21, 1993.
9. (a) J. Youn, M.-C. Chen, Y.-J. Liang, H. Huang, R. P. Ortiz, C. Kim, C. Stern, T.-S. Hu, L.-H. Chen, J.-Y. Yan, A. Facchetti, T. J. Marks, Chem. Mater., 2010, 22, 5031; (b) P.-Y. Huang, L.-H. Chen, C. Kim, H.-C. Chang, Y.-j. Liang, C.-Y. Feng, C.-M. Yeh, J.-C. Ho, C.-C. Lee, M.-C. Chen, ACS Appl. Mater. Inter., 2012, 4, 6992; (c). P.-Y. Huang, L.-H. Chen, Y.-Y. Chen, W.-J. Chang, J.-J. Wang, K.-H. Lii, J.-Y. Yan, J.-C. Ho, C.-C. Lee, C. Kim, M.-C. Chen, Chem.-Eur. J., 2013, 19, 3721; (d) S.-S. Cheng, P.-Y. Huang, M. Ramesh, H.-C. Chang, L.-M. Chen, C.-M. Yeh, C.-L. Fung, M.-C. Wu, H.-C. Lin, C. Kim, H.-C. Lin, M.-C. Chen, C.-W. Chu, Adv. Funct. Mater., 2014, 24, 2057. (e) J. Youn, S. Kewalramani, J. D. Emery, Y. Shi, S. Zhang, H.-C. Chang, Y.-j. Liang, C.-M. Yeh, C.-Y. Feng, H. Huang, C. Stern, L.-H. Chen, J.-C. Ho, M.-C. Chen, M. J. Bedzyk, A. Facchetti, T. J. Marks, Adv. Funct. Mater., 2013, 23, 3850. (f) J. Youn, P.-Y. Huang, S. Zhang, C.-W. Liu, S. Vegiraju, K. Prabakaran, C. Stern, C. Kim, M.-C. Chen, A. Facchetti, T. J. Marks, J. Mater. Chem., C. 2014, 2, 7599.
10 (a) M.-C. Chen, Y.-J. Chiang, C. Kim, Y.-J. Guo, S.-Y. Chen, Y.-J. Liang, Y.-W. Huang, T.-S. Hu, G.-H. Lee, A. Facchetti, T. J. Marks, Chem. Commun., 2009, 14, 1846; (b) C. Kim, M.-C. Chen, Y.-J. Chiang, Y.-J. Guo, J. Youn, H. Huang, Y.-J. Liang, Y.-J. Lin, Y.-W. Huang, T.-S. Hu, G.-H. Lee, A. Facchetti, T. J. Marks, Org. Electron., 2010, 11, 801; (c) J. Youn, P.-Y. Huang, Y.-W. Huang, M.-C. Chen, Y.-J. Lin, H. Huang, R. P. Ortiz, C. Stern, M.-C. Chung, C.-Y. Feng, L.-H. Chen, A. Facchetti, T. J. Marks, Adv. Funct. Mater., 2012, 22, 48; (d) L. Zhang, L. Tan, W. Hu, Z. Wang, J. Mater. Chem., 2009, 19, 8216.
11 (a) D. J. Crouch, P.J. Skabara, M. Heeney, I. McCulloch, S. J. Coles, M. B. Hursthouse Chem. Commun., 2005, 1465; (b) K. Reichenbacher, H. I. Suss, J. Hulliger, Chem. Soc. Rev., 2005, 34, 22.
12 Since 2-phenyldithieno[3,2-b:2′,3′-d]thiophenyl tributyltin (2-P-DTT-SnR3) is cheaper than 2-perfluorophenyldithieno[3,2-b:2′,3′-d]thiophenyl tributyltin (2-FP-DTT-SnR3), the three fused-thiophene molecules were prepared by coupling 2-P-DTT-SnR3 with the corresponding aryl bromide.
13. (a) C.-H. Kuo, D.-C. Huang, W.-T. Peng, K. Goto, I. Chao, Y.-T. Tao, J. Mater. Chem. C, 2014, 2, 3928; b) S. Pola, C.-H. Kuo, W.-T. Peng, M. M. Islam, I. Chao, Y.-T. Tao, Chem. Mater., 2012, 24, 2566.
14. (a) C.-W. Tseng, Y.-T. Tao, ACS Appl. Mater. Inter., 2010, 2, 3231; (b) C.-W. Tseng, Y.-T. Tao, J. Am. Chem. Soc., 2009, 131, 12441.
15. (a) M. Y. Kuo, H.-Y. Chen, I. Chao, Chem.-Eur. J., 2007, 13, 4750; (b) M. Watanabe, Y. J. Chang, S. W. Liu, T. H. Chao, K. Goto, M. M. Islam, C. H. Yuan, Y. T. Tao, T. Shinmyozu, T. J. Chow, Nat. Chem., 2012, 4, 574. (c) S. Pola, C. H. Kuo, W. T. Peng, M. M. Islam, I. Chao, Y. T. Tao, Chem. Mater., 2012, 24, 2566. (d) A. N. Sokolov, S. Atahan-Evrenk, R. Mondal, H. B. Akkerman, R. S. Scanchez-Carrera, S. Granados-Focil, J. Schrier, S. C. B. Mannsfeld, A.P. Zoombelt, Z. Bao, A. Aspuru-Guzik, Nat. Commun., 2011, 2, 437. (e) Y. Song, C. Di, X. Yang, S. Li, W. Xu, Y. Liu, L. Yang, Z. Shuai, D. Zhang, D. Zhu, J. Am. Chem. Soc., 2006, 128, 15940. (f) S. E. Koh, C. Risko, D. A. da Silva Filho, O. Kwon, A. Facchetti, J. L. Bredas, T. J. Marks, M. A. Ratner, Adv. Funct. Mater., 2008, 18, 332. (g) W. Q. Deng, W. A. Gorddard III, J. Phys. Chem. B, 2004, 108, 8614.
16. A. N. Sokolov, S. Atahan-Evrenk, R. Mondal, H. B. Akkerman, R. S. Sanchez-Carrera, S. Granados-Focil, J. Schrier, S. C. B. Mannsfeld, A. P. Zoombelt, Z. Bao, A. Aspuru-Guzik, Nature Comm., 2011, 2, 437.

Chapter-3
1. a) Yan, H.; Chen, Z. H.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dotz, F.; Kastler, M.; Facchetti, A. Nature 2009, 457, 679. b) Kim, C.; Facchetti, A.; Marks, T. J. Science 2007, 318, 76. c) Jones, B. A.; Facchetti, A.; Wasielewski, M. R.; Marks, T. J. J. Am. Chem. Soc. 2007, 129, 15259. d) Usta, H.; Kim, C.; Wang, Z.; Lu, S.; Huang, H.; Facchetti, A.; Marks, T. J. J. Mater. Chem. 2012, 22, 4459. e) Usta, H.; Yilmaz, M. D.; Avestro, A.-J.; Boudinet, D.; Denti, M.; Zhao, W.; Stoddart, J. F.; Facchetti, A. Adv. Mater. 2013, 25, 4327.
2. a) Knopfmacher, O.; Hammock, M. L.; Appleton, A. L.; Schwartz, G.; Mei, J.; Lei, T.; Pei, J.; Bao, Z. Nat. Commun. 2014, 5, 2954. b) Diao, Y.; Tee, B. C.-K.; Giri, G.; Xu, J.; Kim, D. H.; Becerril, H. A.; Stoltenberg, R. M.; Lee, T. H.; Xue, G.; Mannsfeld, S. C. B.; Bao, Z. Nat. Mater. 2013, 12, 665. c) Tang, M. L.; Mannsfeld, S. C. B.; Sun, Y. S.; Becerril, H. A.; Bao, Z. N. J. Am. Chem. Soc. 2009, 131, 882.
3. Yang, G.; Di, C.A.; Zhang, G.; Zhang, J.; Xiang, J.; Zhang, D.; Zhu, D. Adv. Funct. Mater. 2013, 23, 1671.
4. a) Yue, W.; He, T.; Stolte, M.; Gsanger, M.; Würthner, F. Chem. Commun. 2014, 50, 545. b) He, T.; Stolte, M.; Würthner, F. Adv. Mater. 2013, 25, 6951.
5. a) Diemer, P. J.; Lyle, C. R.; Mei, Y.; Sutton, C.; Payne, M. M.; Anthony, J. E.; Coropceanu, V.; Bredas, J.-L.; Jurchescu, O. D. Adv. Mater. 2013, 25, 6956. b) Shin, N.; Kang, J.; Richter, L. J.; Prabhu, V. M.; Kline, R. J.; Fischer, D. A.; Delongchamp, D. M.; Toney, M. F.; Satija, S. K.; Gundlach, D. J.; Purushothaman, B.; Anthony, J. E.; Yoon, D. Y. Adv. Funct. Mater. 2013, 23, 366. c) Subramanian, S.; Park, S. K.; Parkin, S. R.; Podzorov, V.; Jackson, T. N.; Anthony, J. E. J. Am. Chem. Soc. 2008, 130, 2706. d) Anthony, J. E. Chem. Rev. 2006, 106, 5028.
6. a) Noever, S. J.; Fischer, S.; Nickel, B. Adv. Mater. 2013, 25, 2147. b) Avendano-Bolivar, A.; Ware, T.; Arreaga-Salas, D.; Simon, D.; Voit, W. Adv. Mater. 2013, 25, 3095. c) Didane, Y.; Mehl, G. H.; Kumagai, A.; Yoshimoto, N.; Videlot-Ackermann, C.; Brisset, H. J. Am. Chem. Soc. 2008, 130, 17681.
7. a) Zhao, Y.; Guo, Y.; Liu, Y. Adv. Mater. 2013, 25, 5372. b) Zhang, L.; Wang, H.; Zhao, Y.; Guo, Y.; Hu, W.; Yu, G.; Liu, Y. Adv. Mater. 2013, 25, 5455.
8. Schmoltner, K.; Kofler, J.; Klug, A.; List-Kratochvil, E. J. W. Adv. Mater. 2013, 25, 6895.
9. Tsai, T.-D.; Chang, J.-W.; Wen, T.-C.; Guo, T.-F. Adv. Funct. Mater. 2013, 23, 4206.
10. Khim, D.; Han, H.; Baeg, K.-J.; Kim, J.; Kwak, S.-W.; Kim, D.-Y.; Noh, Y.-Y. Adv. Mater. 2013, 25, 4302.
11. a) Mei, Y.; Loth, M. A.; Payne, M.; Zhang, W.; Smith, J.; Day, C. S.; Parkin, S. R.; Heeney, M.; McCulloch, I.; Anthopoulos, T. D.; Anthony, J. E.; Jurchescu, O. D. Adv. Mater. 2013, 25, 4352. b) Liu, Y.; Wang, Y.; Wu, W. P.; Liu, Y. Q.; Xi, H. X.; Wang, L. M.; Qiu, W. F.; Lu, K.; Du, C. Y.; Yu, G. Adv. Funct. Mater. 2009, 19, 772.
12. Fong, H. H.; Pozdin, V. A.; Amassian, A.; Malliaras, G. G.; Smilgies, D. M.; He, M. Q.; Gasper, S.; Zhang, F.; Sorensen, M. J. Am. Chem. Soc. 2008, 130, 13202.
13. Zhang, F.; Hu, Y.; Schuettfort, T.; Di, C.-A.; Gao, X.; McNeill, C. R.; Thomsen, L.; Mannsfeld, S. C. B.; Yuan, W.; Sirringhaus, H.; Zhu, D. J. Am. Chem. Soc. 2013, 135, 2338.
14. a) Kim, C.; Huang, P.-Y.; Jhuang, J.-W.; Chen, M.-C.; Ho, J.-C.; Hu, T.-S.; Yan, J.-Y.; Chen, L.-H.; Lee, G.-H.; Facchetti, A.; Marks, T. J. Org. Electron. 2010, 11, 1363. b) Chen, M. C.; Kim, C.; Chen, S. Y.; Chiang, Y. J.; Chung, M. C.; Facchetti, A.; Marks, T. J. J. Mater. Chem. 2008, 18, 1029.
15. Li, Y. N.; Wu, Y. L.; Liu, P.; Prostran, Z.; Gardner, S.; Ong, B. S. Chem. Mater. 2007, 19, 418.
16. Kim, J.; Han, A. R.; Seo, J. H.; Oh, J. H.; Yang, C. Chem. Mater. 2012, 24, 3464.
17. a) Nam, S.; Jang, J.; Anthony, J. E.; Park, J. J.; Park, C. E.; Kim, K. ACS Appl. Mater. Inter. 2013, 5, 2146. b) Lee, W. H.; Kwak, D.; Anthony, J. E.; Lee, H. S.; Choi, H. H.; Kim, D. H.; Lee, S. G.; Cho, K. Adv. Funct. Mater. 2012, 22, 267. c) Jang, J.; Nam, S.; Im, K.; Hur, J.; Cha, S. N.; Kim, J.; Son, H. B.; Suh, H.; Loth, M. A.; Anthony, J. E. Adv. Funct. Mater. 2012, 22, 1005.
18. Zhang, F.; Melzer, C.; Gassmann, A.; Seggern, H.V.; Schwalm, T.; Gawrisch, C.; Rehahn, M. Org. Electron. 2013, 14, 888.
19. Akhtaruzzaman, M.; Kamata, N.; Nishida, J.; Ando, S.; Tada, H.; Tomura, M.; Yamashita, Y. Chem. Commun. 2005, 3183.
20. Huang, P.-Y.; Chen, L.-H.; Chen, Y.-Y.; Chang, W.-J.; Wang, J.-J.; Lii, K.-H.; Yan, J.-Y.; Ho, J.-C.; Lee, C.-C.; Kim, C.; Chen, M.-C. Chem. Eur. J. 2013, 19, 3721.
21. Huang, P.-Y.; Chen, L.-H.; Kim, C.; Chang, H.-C.; Liang, Y.-j.; Feng, C.-Y.; Yeh, C.-M.; Ho, J.-C.; Lee, C.-C.; Chen. M.-C. ACS Appl. Mater. Inter.2012, 4, 6992.
22. Youn, J.; Kewalramani, S.; Emery, J. D.; Shi, Y.; Zhang, S.; Chang, H.-C.; Liang, Y.-j.; Yeh, C.-M.; Feng, C.-Y.; Huang, H.; Stern, C.; Chen, L.-H.; Ho, J.-C.; Chen, M.-C.; Bedzyk, M. J.; Facchetti, A.; Marks, T. J. Adv. Funct. Mater. 2013, 23, 3850.
23. Cheng, S.-S.; Huang, P.-Y.; Ramesh, M.; Chang, H.-C.; Chen, L-M.; Yeh, C.-M.; Fung, C.-L.; Wu, M.-C.; Liu, C.-C.; Kim, C.; Lin, H.-C.;Chen, M.-C.; Chu, C.-W. Adv. Funct. Mater. 2014, 24, 2057.
24. a) Sun, Y. M.; Ma, Y. W.; Liu, Y. Q.; Lin, Y. Y.; Wang, Z. Y.; Wang, Y.; Di, C. G.; Xiao, K.; Chen, X. M.; Qiu, W. F.; Zhang, B.; Yu, G.; Hu, W. P.; Zhu, D. B. Adv. Funct. Mater. 2006, 16, 426. b) Xiao, K.; Liu, Y. Q.; Qi, T.; Zhang, W.; Wang, F.; Gao, J. H.; Qiu, W. F.; Ma, Y. Q.; Cui, G. L.; Chen, S. Y.; Zhan, X. W.; Yu, G.; Qin, J. G.; Hu, W. P.; Zhu, D. B. J. Am. Chem. Soc. 2005, 127, 13281.
25. Kim, C.; Chen, M. C.; Chiang, Y. J.; Guo, Y. J.; Youn, J.; Huang, H.; Liang, Y. J.; Lin, Y. J.; Huang, Y. W.; Hu, T. S.; Lee, G. H.; Facchetti, A.; Marks, T. J. Org. Electron. 2010, 11, 801.
26. Chen, M. C.; Chiang, Y. J.; Kim, C.; Guo, Y. J.; Chen, S. Y.; Liang, Y. J.; Huang, Y. W.; Hu, T. S.; Lee, G. H.; Facchetti, A.; Marks, T. J. Chem. Commun. 2009, 1846.
27. Letizia, J. A.; Facchetti, A.; Stern, C. L.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 13476.
28 . Youn, J.; Huang, P.-Y.; Huang, Y.-W.; Chen, M.-C.; Lin, Y.-J.; Hunag, H.; Ortiz, R. P.; Stern, C. L.; Chung, M.-C.; Feng, C.-Y.; Chen, L.-H.; Facchetti, A.; Marks, T. J. Adv. Funct. Mater. 2012, 22, 48.
29. Measured with a Pt working electrode in an o-dichlorobenzene solution using 0.1 mol dm-3 Bu4NPF6 as the supporting electrolyte.
30. Lee, K.; Heeger, A. J. Synth. Met. 2002, 128, 279.
31. Osterbacka, R.; An, C. P.; Jiang, X. M.; Vardeny, Z. V. Science 2000, 287, 839.
32. Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meijer, E. W.; Herwig, P.; de Leeuw, D. M. Nature 1999, 401, 685.
33. Holmes, D.; Kumaraswamy, S.; Matzger, A. J.; Vollhardt, K. P. C. Chem.Eur. J. 1999, 5, 3399.
34. Curtis, M. D.; Cao, J.; Kampf, J. W. J. Am. Chem. Soc. 2004, 126, 4318.
35. Li, R. J.; Hu, W. P.; Liu, Y. Q.; Zhu, D. B. Acc. Chem. Res. 2010, 43, 529.
36. Rivnay, J.; Jimison, L. H.; Northrup, J. E.; Toney, M. F.; Noriega, R.; Lu, S. F.; Marks, T. J.; Facchetti, A.; Salleo, A. Nat. Mater. 2009, 8, 952.
37. Moon, H.; Zeis, R.; Borkent, E. J.; Besnard, C.; Lovinger, A. J.; Siegrist, T.; Kloc, C.; Bao, Z. N. J. Am. Chem. Soc. 2004, 126, 15322.
38. Giri, G.; Verploegen, E.; Mannsfeld, S. C. B.; Atahan-Evrenk, S.; Kim, D. H.; Lee, S. Y.; Becerril, H. A.; Aspuru-Guzik, A.; Toney, M. F.; Bao, Z. Nature. 2011, 480, 504.
39. Chung, D. S.; Park, J. W.; Park, J. H.; Moon, D.; Kim, G. H.; Lee, H. S.; Lee, D. H.; Shim, H. K.; Kwon, S. K.; Park, C. E. J. Mater. Chem. 2010, 20, 524.
40. Briseno, A. L.; Aizenberg, J.; Han, Y. J.; Penkala, R. A.; Moon, H.; Lovinger, A. J.; Kloc, C.; Bao, Z. A. J. Am. Chem. Soc. 2005, 127, 12164.
41. Menzel, H.; Weichart, B.; Schmidt, A.; Paul, S.; Knoll, W.; Stumpe, J.; Fischer, T. Langmuir 1994, 10, 1926.
42. Spano, F. C. Accounts Chem. Res. 2010, 43, 429.
43. Paek, S.; Lee, J.; Ko, J. M.; Lim, H. S.; Lim, J.; Cho, S. H.; Lee, J. Y.; Lee, C. Mol. Cryst. Liq. Cryst. 2009, 504, 52.
44. Choi, J. H.; Cho, D. W.; Park, H. J.; Jin, S. H.; Jung, S.; Yi, M.; Song, C. K.; Yoon, U. C. Synth. Met. 2009, 159, 1589.
45. Yoon, M. H.; Facchetti, A.; Stern, C. E.; Marks, T. J. J. Am. Chem. Soc. 2006, 128, 5792.
46. Physical Chemistry; 8th ed.; Peter Atkins, J. D. P., Ed.; W. H. Freeman and Company: New York, 2006.
47. Semiconductor Devices: Physics and Technology; Sze, S. M., Ed.; Wiley: New York, 1985.
48. Tello, M.; Chiesa, M.; Duffy, C. M.; Sirringhaus, H. Adv. Funct. Mater. 2008, 18, 3907.
49. Horowitz, G. Adv. Funct. Mater. 2003, 13, 53.
50. Orton, J. W.; Powell, M. J. Rep. Prog. Phys. 1980, 43, 1263.
51. Pike, G. E.; Seager, C. H. J. Appl. Phys. 1979, 50, 3414.
52. Okamoto, H.; Kawasaki, N.; Kaji, Y.; Kubozono, Y.; Fujiwara, A.; Yamaji, M. J. Am. Chem. Soc. 2008, 130, 10470.
53. Chen, W.; Qi, D. C.; Huang, H.; Gao, X. Y.; Wee, A. T. S. Adv. Funct. Mater. 2011, 21, 410.
54. Heimel, G.; Salzmann, I.; Duhm, S.; Rabe, J. P.; Koch, N. Adv. Funct. Mater. 2009, 19, 3874.
55. Duhm, S.; Heimel, G.; Salzmann, I.; Glowatzki, H.; Johnson, R. L.; Vollmer, A.; Rabe, J. P.; Koch, N. Nat. Mater. 2008, 7, 326.
56. Kobayashi, S.; Nishikawa, T.; Takenobu, T.; Mori, S.; Shimoda, T.; Mitani, T.; Shimotani, H.; Yoshimoto, N.; Ogawa, S.; Iwasa, Y. Nat. Mater. 2004, 3, 317.
57. Arantes, C.; Scholz, M.; Schmidt, R.; Dehm, V.; Rocco, M. L. M.; Scholl, A.; Reinert, F.; Wurthner, F. Appl. Phys. A. 2012, 108, 629.
58. D’Andrade, B. W.; Datta, S.; Forrest, S. R.; Djurovich, P.; Polikarpov, E.; Thompson, M. E. Org. Electron.2005, 6, 11.
59. Djurovich, P.; Mayo, E. I.; Forrest, S. R.; Thompson, M. E. Org. Electron. 2009, 10, 515.
60. Facchetti, A.; Yoon, M. H.; Stern, C. L.; Katz, H. E.; Marks, T. J. Angew. Chem.-Int. Edit. 2003, 42, 3900.
61. Fuller, L. S.; Iddon, B.; Smith, K. A. J. Chem. Soc., Perkin Trans 1 1997, 3465.
62. Frey, J.; Bond, A. D.; Holmes, A. B. Chem. Commun. 2002, 2424.
Chapter-4
(1) (a) Youn, J.; Huang, P.-Y.; Huang, Y.-W.; Chen, M.-C.; Lin, Y.-J.; Huang, H.; Ponce Ortiz, R.; Stern, C.; Chung, M.-C.; Feng, C.-Y.; Chen, L.-H.; Facchetti, A.; Marks, T. J. Adv. Funct. Mater. 2012, 22, 48. (b) Youn, J.; Huang, P.-Y.; Zhang, S.; Liu, C.-W.; Vegiraju, S.; Prabakaran, K.; Stern, C.; Kim, C.; Chen, M.-C.; Facchetti, A.; Marks, T. J. J. Mater. Chem. C 2014, 2, 7599. (c) Yang, X.; Liu, D.; Miao, Q. Angew. Chem. Int. Ed. 2014, 53, 6786. (d) He, B.; Pun, A. B.; Zherebetskyy, D.; Liu, Y.; Liu, F.; Klivansky, L. M.; McGough, A. M.; Zhang, B. A.; Lo, K.; Russell, T. P.; Wang, L.; Liu, Y. J. Am. Chem. Soc. 2014, 136, 15093. (e) Yuan, Y.; Giri, G.; Ayzner, A. L.; Zoombelt, A. P.; Mannsfeld, S. C. B.; Chen, J.; Nordlund, D.; Toney, M. F.; Huang, J.; Bao, Z. Nat. Commun. 2014, 5, 3005.
(2) Kan, B.; Zhang, Q.; Li, M.; Wan, X.; Ni, W.; Long, G.; Wang, Y.; Yang, X.; Feng, H.; Chen, Y. J. Am. Chem. Soc. 2014, 136, 15529.
(3) Zhang, Y.; Kim, C.; Lin, J.; Thuc-Quyen, N. Adv. Funct. Mater. 2012, 22, 97.
(4) Huang, H.; Chen, Z.; Ponce Ortiz, R.; Newman, C.; Usta, H.; Lou, S.; Youn, J.; Noh, Y.-Y.; Baeg, K.-J.; Chen, L. X.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2012, 134, 10966.
(5) Guo, X.; Quinn, J.; Chen, Z.; Usta, H.; Zheng, Y.; Xia, Y.; Hennek, J. W.; Ortiz, R. P.; Marks, T. J.; Facchetti, A. J. Am. Chem. Soc. 2013, 135, 1986.
(6) (a) Raymond, F.; Di Cesare, N.; Belletete, M.; Durocher, G.; Leclerc, M. Adv. Mater. 1998, 10, 599. (b) Di Maria, F.; Olivelli, P.; Gazzano, M.; Zanelli, A.; Biasiucci, M.; Gigli, G.; Gentili, D.; D′Angelo, P.; Cavallini, M.; Barbarella, G. J. Am. Chem. Soc. 2011, 133, 8654.
(7) Chen, M.-C.; Vegiraju, S.; Huang, C.-M.; Huang, P.-Y.; Prabakaran, K.; Yau, S. L.; Chen, W.-C.; Peng, W.-T.; Chao, I.; Kim, C.; Tao, Y.-T. J. Mater. Chem. C 2014, 2, 8892. (b) Chen, M.-C.; Chiang, Y.-J.; Kim, C.; Guo, Y.-J.; Chen, S.-Y.; Liang, Y.-J.; Huang, Y.-W.; Hu, T.-S.; Lee, G.-H.; Facchetti, A.; Marks, T. J. Chem. Commun. 2009, 1846.
(8) Huang, L.; Li, H. Acta Crystallogr., Sect. E: Struct. Rep. Online 2011, 67, o3512.
(9) (a) Becerril, H. A.; Roberts, M. E.; Liu, Z.; Locklin, J.; Bao, Z. Adv. Mater. 2008, 20, 2588. (b) Giri, G.; Verploegen, E.; Mannsfeld, S. C. B.; Atahan-Evrenk, S.; Kim, D. H.; Lee, S. Y.; Becerril, H. A.; Aspuru-Guzik, A.; Toney, M. F.; Bao, Z. Nature 2011, 480, 504. (c) Diao, Y.; Tee, B. C. K.; Giri, G.; Xu, J.; Kim, D. H.; Becerril, H. A.; Stoltenberg, R. M.; Lee, T. H.; Xue, G.; Mannsfeld, S. C. B.; Bao, Z. Nat. Mater. 2013, 12, 665.
(10) Kline, R. J.; DeLongchamp, D. M.; Fischer, D. A.; Lin, E. K.; Richter, L. J.; Chabinyc, M. L.; Toney, M. F.; Heeney, M.; McCulloch, I. Macromolecules 2007, 40, 7960.

Chapter-5
1. C. M. Proctor, C. Kim, D. Neher and T.-Q. Nguyen, Adv. Funct. Mater., 2013, 23, 3584-3594.
2. B. Walker, A. B. Tamayo, X.-D. Dang, P. Zalar, J. H. Seo, A. Garcia, M. Tantiwiwat and T.-Q.Nguyen, Adv. Funct. Mater., 2009, 19, 3063-3069.
3. Y. Liu, X. Wan, F. Wang, J. Zhou, G. Long, J. Tian and Y. Chen, Adv. Mater., 2011, 23, 5387-5391
4. X. Guo, N. Zhou, S. J. Lou, J. Smith, D. B. Tice, J. W. Hennek, R. P. Ortiz, J. T. L. Navarrete, S.Li, J. Strzalka, L. X. Chen, R. P. H. Chang, A. Facchetti and T. J. Marks, Nat Photon, 2013, 7,825-833.
5. H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, M. Kastler and A. Facchetti, Nature, 2009, 457, 679-686.
6. D. Fernandez, A. Viterisi, J. W. Ryan, F. Gispert-Guirado, S. Vidal, S. Filippone, N. Martin and E. Palomares, Nanoscale, 2014, 6, 5871-5878.
7. J. Liu, B. Walker, A. Tamayo, Y. Zhang and T.-Q. Nguyen, Adv. Funct. Mater., 2013, 23, 47-56.
8. E. Ripaud, D. Demeter, T. Rousseau, E. Boucard-Cétol, M. Allain, R. Po, P. Leriche and J.Roncali, Dyes and Pigments, 2012, 95, 126-133.
9. Y. Qiao, Y. Guo, C. Yu, F. Zhang, W. Xu, Y. Liu and D. Zhu, J. Am. Chem. Soc., 2012, 134, 4084-4087.
10. S.-L. Suraru, U. Zschieschang, H. Klauk and F. Wurthner, Chem. Commun., 2011, 47, 1767-1769.
11. A. B. Tamayo, B. Walker and T.-Q. Nguyen*, J. Phys. Chem. C, 2008, 112, 11545-11551.
12. M. Tantiwiwat, A. Tamayo, N. Luu, X.-D. Dang and T.-Q. Nguyen, J. Phys. Chem. C, 2008, 112, 17402-17407.
13. Y. Li, P. Sonar, L. Murphy and W. Hong, Energy Environ. Sci., 2013, 6, 1684-1710.
14. J. Li, Y. Zhao, H. S. Tan, Y. Guo, C.-A. Di, G. Yu, Y. Liu, M. Lin, S. H. Lim, Y. Zhou, H. Su and B. S. Ong, Sci. Rep., 2012, 2.
15. J. W. Jung, F. Liu, T. P. Russell and W. H. Jo, Energy Environ. Sci., 2012, 5, 6857-6861.
16. Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan and A. J. Heeger, Nat Mater, 2012, 11, 44-48.
17. T. S. van der Poll, J. A. Love, T.-Q. Nguyen and G. C. Bazan, Adv. Mater., 2012, 24, 3646-3649.
18. A. K. Kyaw, D. H. Wang, V. Gupta, J. Zhang, S. Chand, G. C. Bazan and A. J. Heeger, Adv.Mater., 2013, 25, 2397-2402.
19. L. Fu, W. Fu, P. Cheng, Z. Xie, C. Fan, M. Shi, J. Ling, J. Hou, X. Zhan and H. Chen, J. Mater.Chem. A, 2014, 2, 6589-6597.
20. M. T. Lloyd, J. E. Anthony and G. G. Malliaras, Mater. Today, 2007, 10, 34-41.
21. Y. Lin, Y. Li and X. Zhan, Chem. Soc. Rev., 2012, 41, 4245-4272.
22. S. Loser, C. J. Bruns, H. Miyauchi, R. P. Ortiz, A. Facchetti, S. I. Stupp and T. J. Marks, J. Am.Chem. Soc., 2011, 133, 8142-8145.
23. P.-L. T. Boudreault, J. W. Hennek, S. Loser, R. P. Ortiz, B. J. Eckstein, A. Facchetti and T. J. Marks, Chem. Mater., 2012, 24, 2929-2942.
24. J. Huang, C. Zhan, X. Zhang, Y. Zhao, Z. Lu, H. Jia, B. Jiang, J. Ye, S. Zhang, A. Tang, Y. Liu, Q. Pei and J. Yao, ACS Appl. Mater. Inter., 2013, 5, 2033-2039.
25. Y. Lin, L. Ma, Y. Li, Y. Liu, D. Zhu and X. Zhan, Advanced Energy Materials, 2013, 3, 1166-1170.
26. J. Youn, M.-C. Chen, Y.-j. Liang, H. Huang, R. P. Ortiz, C. Kim, C. Stern, T.-S. Hu, L.-H. Chen, J.-Y. Yan, A. Facchetti and T. J. Marks, Chem. Mater., 2010, 22, 5031-5041.
27. S.-S. Cheng, P.-Y. Huang, M. Ramesh, H.-C. Chang, L.-M. Chen, C.-M. Yeh, C.-L. Fung, M.-C. Wu, C.-C. Liu, C. Kim, H.-C. Lin, M.-C. Chen and C.-W. Chu, Adv. Funct. Mater., 2014, 24, 2057-2063.
28. J. Youn, P.-Y. Huang, S. Zhang, C.-W. Liu, S. Vegiraju, K. Prabakaran, C. Stern, C. Kim, M.-C. Chen, A. Facchetti and T. J. Marks, Journal of Materials Chemistry C, 2014, 2, 7599-7607.
29. H. H. Fong, V. A. Pozdin, A. Amassian, G. G. Malliaras, D.-M. Smilgies, M. He, S. Gasper, F. Zhang and M. Sorensen, J. Am. Chem. Soc., 2008, 130, 13202-13203.
30. J. Youn, P.-Y. Huang, Y.-W. Huang, M.-C. Chen, Y.-J. Lin, H. Huang, R. P. Ortiz, C. Stern, M.- C. Chung, C.-Y. Feng, L.-H. Chen, A. Facchetti and T. J. Marks, Adv. Funct. Mater., 2012, 22, 48-60.
31. Y. S. Yang, T. Yasuda, H. Kakizoe, H. Mieno, H. Kino, Y. Tateyama and C. Adachi, Chem. Commun., 2013, 49, 6483-6485.
32. M.-C. Chen, Y.-J. Chiang, C. Kim, Y.-J. Guo, S.-Y. Chen, Y.-J. Liang, Y.-W. Huang, T.-S. Hu, G.-H. Lee, A. Facchetti and T. J. Marks, Chem. Commun., 2009, 1846-1848.
33. Y. M. Sun, Y. Q. Ma, Y. Q. Liu, Y. Y. Lin, Z. Y. Wang, Y. Wang, C. A. Di, K. Xiao, X. M. Chen, W. F. Qiu, B. Zhang, G. Yu, W. P. Hu and D. B. Zhu, Adv. Funct. Mater., 2006, 16, 426-432.
34. M.-C. Chen, S. Vegiraju, C.-M. Huang, P.-Y. Huang, K. Prabakaran, S. L. Yau, W.-C. Chen, W.- T. Peng, I. Chao, C. Kim and Y.-T. Tao, Journal of Materials Chemistry C, 2014, 2, 8892-8902.
35. C. Lu and W.-C. Chen, Chem. Asian J., 2013, 8, 2813-2821.
36. J. K. Park, C. Kim, B. Walker, T.-Q. Nguyen and J. H. Seo, RSC Advances, 2012, 2, 2232-2234.
37. N. Zhou, K. Prabakaran, B. Lee, S. H. Chang, B. Harutyunyan, P. Guo, M. R. Butler, A. Timalsina, M. J. Bedzyk, M. A. Ratner, S. Vegiraju, S. Yau, C.-G. Wu, R. P. H. Chang, A. Facchetti, M.-C. Chen and T. J. Marks, J. Am. Chem. Soc., 2015, 137, 4414-4423.
38. M. He and F. Zhang, J. Org. Chem., 2006, 72, 442-451.
39. G. Qian, J. Qi, J. A. Davey, J. S. Wright and Z. Y. Wang, Chem. Mater., 2012, 24, 2364-2372.
40. W. L. Kalb, T. Mathis, S. Haas, A. F. Stassen and B. Batlogg, Appl. Phys. Lett., 2007, 90, -.
41. J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan and A. J. Heeger, J. Am. Chem. Soc., 2008, 130, 3619-3623.
42. Y. Huang, W. Wen, S. Mukherjee, H. Ade, E. J. Kramer and G. C. Bazan, Adv. Mater., 2014, 26, 4168-4172.
43. A. K. K. Kyaw, D. H. Wang, C. Luo, Y. Cao, T. Q. Nguyen, G. C. Bazan and A. J. Heeger, Adv. Energy Mater, 2014, 4, 1301469.
44. S. R. Cowan, N. Banerji, W. L. Leong and A. J. Heeger, Adv. Funct. Mater., 2012, 22, 1116-1128.
45. D. F. Barbe, J. Phys. D: Appl. Phys., 1971, 4, 1812.

Chapter-6
1. Göppert-Mayer, M. Ann. Phys. 1931, 401, 273-294.
2. (a) Pawlicki, M.; Collins, H. A.; Denning, R. G.; Anderson, H. L. Angew. Chem. Int. Ed. 2009, 48, 3244-3266; (b) W. Spangler, C. J. Mater. Chem. 1999, 9, 2013-2020; (c) He, G. S.; Tan, L.-S.; Zheng, Q.; Prasad, P. N. Chem. Rev. 2008, 108, 1245-1330; (d) Terenziani, F.; Katan, C.; Badaeva, E.; Tretiak, S.; Blanchard-Desce, M. Adv. Mater. 2008, 20, 4641-4678; (e) Myung Kim, H.; Rae Cho, B. Chem. Commun. 2009, 153-164; (f) Parthenopoulos, D. A.; Rentzepis, P. M. Science 1989, 245, 843-5; (g) Denk, W.; Strickler, J. H.; Webb, W. W. Science 1990, 248, 73-6; (h) Zhou, W.; Kuebler, S. M.; Braun, K. L.; Yu, T.; Cammack, J. K.; Ober, C. K.; Perry, J. W.; Marder, S. R. Science 2002, 296, 1106-9.
3. (a) Oliveira, S. L.; Corrêa, D. S.; Misoguti, L.; Constantino, C. J. L.; Aroca, R. F.; Zilio, S. C.; Mendonça, C. R. Advanced materials 2005, 17, 1890-1893; (b) He, G. S.; Bhawalkar, J. D.; Zhao, C. F.; Prasad, P. N. Appl. Phys. Lett. 1995, 67, 2433-2435.
4. (a) To, W.-P.; Chan, K. T.; Tong, G. S. M.; Ma, C.; Kwok, W.-M.; Guan, X.; Low, K.-H.; Che, C.-M. Angew. Chem. Int. Ed. 2013, 52, 6648-6652; (b) Shalav, A.; Richards, B. S.; Green, M. A. Sol. Energy Mater. Sol. Cells 2007, 91, 829-842; (c) van der Ende, B. M.; Aarts, L.; Meijerink, A. Phys. Chem. Chem. Phys. 2009, 11, 11081-11095; (d) Deutsch, Z.; Neeman, L.; Oron, D. Nat. Nano. 2013, 8, 649-653.
5. (a) Cumpston, B. H.; Ananthavel, S. P.; Barlow, S.; Dyer, D. L.; Ehrlich, J. E.; Erskine, L. L.; Heikal, A. A.; Kuebler, S. M.; Lee, I.-Y. S.; McCord-Maughon, D.; Qin, J.; Rockel, H.; Rumi, M.; Wu, X.-L.; Marder, S. R.; Perry, J. W. Nature 1999, 398, 51-54; (b) Iliopoulos, K.; Krupka, O.; Gindre, D.; Sallé, M. J. Am. Chem. Soc. 2010, 132, 14343-14345; (c) Zhou, H.; Zhou, F.; Tang, S.; Wu, P.; Chen, Y.; Tu, Y.; Wu, J.; Tian, Y. Dyes Pigm. 2012, 92, 633-641; (d) Dallari, W.; Scotto, M.; Allione, M.; Samoylova, E.; Pignatelli, F.; Cingolani, R.; Athanassiou, A.; Diaspro, A. Microelectron. Eng. 2011, 88, 3466-3469.
6. Kawata, S.; Sun, H. B.; Tanaka, T.; Takada, K. Nature 2001, 412, 697-8.
7. (a) Lee, J. H.; Lim, C. S.; Tian, Y. S.; Han, J. H.; Cho, B. R. J. Am. Chem. Soc. 2010, 132, 1216-1217; (b) Yao, S.; Belfield, K. D. Eur. J. Org. Chem. 2012, 2012, 3199-3217; (c) Wang, H.; Zhang, Q.; Zhang, J.; Li, L.; Zhang, Q.; Li, S.; Zhang, S.; Wu, J.; Tian, Y. Dyes Pigm. 2014, 102, 263-272; (d) Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.; Webb, W. W. Science 2003, 300, 1434-1436.
8. (a) Senge, M. O.; Fazekas, M.; Pintea, M.; Zawadzka, M.; Blau, W. J. Eur. J. Org. Chem. 2011, 2011, 5797-5816; (b) Brown, S. Nat. Photon. 2008, 2, 394-395; (c) Hammerer, F.; Garcia, G.; Chen, S.; Poyer, F.; Achelle, S.; Fiorini-Debuisschert, C.; Teulade-Fichou, M.-P.; Maillard, P. J. Org. Chem. 2014, 79, 1406-1417; (d) Ogawa, K.; Kobuke, Y. BioMed Res. Int. 2013, 2013, 11.
9. (a) Lin, T.-C.; Liu, C.-Y.; Li, M.-H.; Liu, Y.-Y.; Tseng, S.-Y.; Wang, Y.-T.; Tseng, Y.-H.; Chu, H.-H.; Luo, C.-W. J. Mater.Chem. C. 2014, 2, 821-828; (b) Lin, T.-C.; Li, M.-L.; Liu, C.-Y.; Tsai, M.-Y.; Lee, Y.-H.; Febriani, Y.; Lin, J.-H.; Shen, Y.-K. Eur. J. Org. Chem. 2014, 2014, 1615-1621; (c) Lin, T.-C.; Guo, F.-L.; Li, M.-H.; Liu, C.-Y. Chem. Asian J. 2013, 8, 2102-2110; (d) Huang, W.; Tang, F.; Li, B.; Su, J.; Tian, H. J. Mater. Chem. C. 2014, 2, 1141-1148.
10. (a) Belfield, K. D.; Hagan, D. J.; Van Stryland, E. W.; Schafer, K. J.; Negres, R. A. Org. Lett. 1999, 1, 1575-1578; (b) Bhaskar, A.; Ramakrishna, G.; Lu, Z.; Twieg, R.; Hales, J. M.; Hagan, D. J.; Van Stryland, E.; Goodson, T. J. Am. Chem. Soc. 2006, 128, 11840-11849; (c) Williams-Harry, M.; Bhaskar, A.; Ramakrishna, G.; Goodson, T.; Imamura, M.; Mawatari, A.; Nakao, K.; Enozawa, H.; Nishinaga, T.; Iyoda, M. J. Am. Chem. Soc. 2008, 130, 3252-3253; (d) Belfield, K. D.; Morales, A. R.; Hales, J. M.; Hagan, D. J.; Van Stryland, E. W.; Chapela, V. M.; Percino, J. Chem. Mater. 2004, 16, 2267-2273; (e) Varnavski, O.; Yan, X.; Mongin, O.; Blanchard-Desce, M.; Goodson, T. J. Phys. Chem. C 2006, 111, 149-162; (f) Ramakrishna, G.; Goodson, T. J. Phys. Chem. A 2007, 111, 993-1000.
11. Malval, J.-P.; Achelle, S.; Bodiou, L.; Spangenberg, A.; Gomez, L. C.; Soppera, O.; Guen, F. R.-l. Journal of Materials Chemistry C 2014, 2, 7869-7880.
12. Patra, A.; Pan, M.; Friend, C. S.; Lin, T.-C.; Cartwright, A. N.; Prasad, P. N.; Burzynski, R. Chem. Mater. 2002, 14, 4044-4048.
13. Albota, M.; Beljonne, D.; Brédas, J.-L.; Ehrlich, J. E.; Fu, J.-Y.; Heikal, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R.; McCord-Maughon, D.; Perry, J. W.; Röckel, H.; Rumi, M.; Subramaniam, G.; Webb, W. W.; Wu, X.-L.; Xu, C. Science 1998, 281, 1653-1656.
14. (a) Mongin, O.; Porrès, L.; Charlot, M.; Katan, C.; Blanchard-Desce, M. Chem. Eur. J. 2007, 13, 1481-1498; (b) Morales, A. R.; Belfield, K. D.; Hales, J. M.; Van Stryland, E. W.; Hagan, D. J. Chem. Mater. 2006, 18, 4972-4980; (c) Chung, S. J.; Lin, T. C.; Kim, K. S.; He, G. S.; Swiatkiewicz, J.; Prasad, P. N.; Baker, G. A.; Bright, F. V. Chem. Mater. 2001, 13, 4071-4076; (d) Zhang, H. C.; Guo, E. Q.; Zhang, Y. L.; Ren, P. H.; Yang, W. J. Chem. Mater. 2009, 21, 5125-5135; (e) Yang, W. J.; Kim, C. H.; Jeong, M.-Y.; Lee, S. K.; Piao, M. J.; Jeon, S.-J.; Cho, B. R. Chem. Mater. 2004, 16, 2783-2789.
15. (a) Youn, J.; Kewalramani, S.; Emery, J. D.; Shi, Y.; Zhang, S.; Chang, H.-C.; Liang, Y.-j.; Yeh, C.-M.; Feng, C.-Y.; Huang, H.; Stern, C.; Chen, L.-H.; Ho, J.-C.; Chen, M.-C.; Bedzyk, M. J.; Facchetti, A.; Marks, T. J. Adv. Funct. Mater. 2013, 23, 3850-3865; (b) Youn, J.; Huang, P.-Y.; Huang, Y.-W.; Chen, M.-C.; Lin, Y.-J.; Huang, H.; Ortiz, R. P.; Stern, C.; Chung, M.-C.; Feng, C.-Y.; Chen, L.-H.; Facchetti, A.; Marks, T. J. Adv. Funct. Mater. 2012, 22, 48-60; (c) Chen, M.-C.; Vegiraju, S.; Huang, C.-M.; Huang, P.-Y.; Prabakaran, K.; Yau, S. L.; Chen, W.-C.; Peng, W.-T.; Chao, I.; Kim, C.; Tao, Y.-T. Journal of Materials Chemistry C 2014, 2, 8892-8902; (d) Youn, J.; Huang, P.-Y.; Zhang, S.; Liu, C.-W.; Vegiraju, S.; Prabakaran, K.; Stern, C.; Kim, C.; Chen, M.-C.; Facchetti, A.; Marks, T. J. Journal of Materials Chemistry C 2014, 2, 7599-7607; (e) Kumaresan, P.; Vegiraju, S.; Ezhumalai, Y.; Yau, S. L.; Kim, C.; Lee, W. H.; Chen, M. C. Polymers-Basel 2014, 6, 2645-2669; (f) Zhou, N.; Prabakaran, K.; Lee, B.; Chang, S. H.; Harutyunyan, B.; Guo, P.; Butler, M. R.; Timalsina, A.; Bedzyk, M. J.; Ratner, M. A.; Vegiraju, S.; Yau, S.; Wu, C.-G.; Chang, R. P. H.; Facchetti, A.; Chen, M.-C.; Marks, T. J. J. Am. Chem. Soc. 2015, 137, 4414-4423.
16. (a) Kim, O.-K.; Lee, K.-S.; Woo, H. Y.; Kim, K.-S.; He, G. S.; Swiatkiewicz, J.; Prasad, P. N. Chem. Mater. 2000, 12, 284-286; (b) Chen, M.-C.; Kumaresan, P.; Liu, Y.-Y.; Vegiraju, S.; Ezhumalai, Y.; Yau, S.-L.; Lin, T.-C. Chem. Asian J. 2015, n/a-n/a.
17. (a) Fong, H. H.; Pozdin, V. A.; Amassian, A.; Malliaras, G. G.; Smilgies, D.-M.; He, M.; Gasper, S.; Zhang, F.; Sorensen, M. J. Am. Chem. Soc. 2008, 130, 13202-13203; (b) He, M.; Li, J.; Sorensen, M. L.; Zhang, F.; Hancock, R. R.; Fong, H. H.; Pozdin, V. A.; Smilgies, D.-M.; Malliaras, G. G. J. Am. Chem. Soc. 2009, 131, 11930-11938.
18. Demeter, D.; Jeux, V.; Leriche, P.; Blanchard, P.; Olivier, Y.; Cornil, J.; Po, R.; Roncali, J. Adv. Funct. Mater. 2013, 23, 4854-4861.
19. Yun, H.-J.; Chung, D. S.; Kang, I.; Park, J. W.; Kim, Y.-H.; Kwon, S.-K. J. Mater. Chem. 2012, 22, 24924-24929.
20. (a) Van Stryland, E. W.; Woodall, M. A.; Vanherzeele, H.; Soileau, M. J. Opt. Lett. 1985, 10, 490-492; (b) Zhou, W.; Jin, F.; Huang, X.; Duan, X.-M.; Zhan, X. Macromolecules 2012, 45, 7823-7828.
21. Rumi, M.; Ehrlich, J. E.; Heikal, A. A.; Perry, J. W.; Barlow, S.; Hu, Z.; McCord-Maughon, D.; Parker, T. C.; Röckel, H.; Thayumanavan, S.; Marder, S. R.; Beljonne, D.; Brédas, J.-L. J. Am. Chem. Soc. 2000, 122, 9500-9510.
22. Xu, C.; Webb, W. W. J. Opt. Soc. Am. B 1996, 13, 481-491.
23. Hou, J.; Tan, Z. a.; Yan, Y.; He, Y.; Yang, C.; Li, Y. J. Am. Chem. Soc. 2006, 128, 4911-4916.
24. Ha, J. S.; Kim, K. H.; Choi, D. H. J. Am. Chem. Soc. 2011, 133, 10364-10367.
25. Rieger, R.; Beckmann, D.; Pisula, W.; Kastler, M.; Müllen, K. Macromolecules 2010, 43, 6264-6267.
26. Zhan, X.; Tan, Z. a.; Domercq, B.; An, Z.; Zhang, X.; Barlow, S.; Li, Y.; Zhu, D.; Kippelen, B.; Marder, S. R. J. Am. Chem. Soc. 2007, 129, 7246-7247.


指導教授 陳銘洲(Chen, Ming-Chou) 審核日期 2015-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明