博碩士論文 102324001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.15.203.195
姓名 杜尚益(Shang-Yi Tu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 CoCrFeMnNi 高熵合金 形變行為之探討
(Study on deformation behaviors of CoCrFeMnNi high entropy alloys)
相關論文
★ 雙連續相中孔二氧化鈦光催化以及電子結構之實驗與模擬研究★ 聚合物-奈米粒子複合材料在玻璃轉移溫度下的結構與動力學相關性之實驗與模擬研究
★ 新興糖基雙子型界面活性劑之結構以及其對基因轉染效率之影響★ 自發曲率、金屬離子吸附以及微脂體膜融合效率三者間之相關性探討
★ 脂質組成成分對細胞膜物理性質與生物功能的影響★ 添加具有抗菌潛力的胜肽對磷脂質自組裝結構與彈性性質的影響
★ 分子構型與表面電荷密度對雙子型陰陽離子界面活性劑系統之相行為影響★ 探討具有不同間隔長度的陰、陽離子雙子型界面活性劑對於DNA壓實與解壓實之影響
★ 具抗菌潛力之胜肽如何影響脂質膜的彈性性質與結構完整性★ 透過改變磷脂質排列密度減少Amyloid β與膜之間交互作用
★ 對生物膜具活性的胜肽誘導相分離脂質膜產生結構上擾動★ 人類脂肪幹細胞於生醫材料塗佈細胞外間質之純化及分化
★ 發展量測雙層脂質膜的排列密度之實驗技術★ 利用酸鹼度敏感型雙子型界面活性劑製作之基因載體對核內體脂質膜結構之影響
★ 開發預測雙子型界面活性劑之自組裝結構的方法★ 抗肌萎縮蛋白的膜結合錨如何影響其與脂質膜的相互作用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 等莫耳比的CoCrFeMnNi高熵合金為單一Face Center Cubic相的合金,在Face Center Cubic晶格中Co、Cr、Fe、Mn、Ni五種原子隨機分布其中,而因為五種原子的電負度以及原子半徑等皆不相同,因此會有晶格扭曲的現象,影響其機械性質。本研究利用量測不同溫度時的機械性質以及以即時中子繞射觀察在不同溫度以及不同形變程度下繞射圖譜的變化以研究在各種條件下的晶格應變的不同,再利用穿透式電子顯微鏡(TEM)觀察各溫度下的表面微結構以研究機械性質與微結構之間的關係。
從巨觀拉伸試驗的結果可知道CoCrFeMnNi高熵合金在低溫甚至常溫下可同時擁有良好的強度以及延展性,非常適合應用在工程材料上[1],而從即時中子繞射的結果可以看出,CoCrFeMnNi高熵合金的表現行為與傳統合金不一樣,高熵合金的彈性係數比平均法則來的小,且對溫度不太敏感。原因來自於晶格扭曲導致原子不在完美的晶格位置上,施加應力後,系統對於應力的反應和一般金屬不同,在高溫熱振動會先抵銷晶格應變,使得彈性係數對溫度不敏感。
從中子繞射的微觀結果可以看出,其各個晶面的彈性模數隨著溫度上升而會有兩組趨勢,其中(311)(222)(420)等平面為一組,其彈性模數隨著溫度上升而直線下降,(111)(200)(220)(400)(331)面則為另外一組,其彈性模數隨著溫度上升會在200及400oC時先上升,到600OC後才下降,造成此現象的原因為高熵合金晶格扭曲所造成,而當溫度更高時,原子間距變遠,因此晶格扭曲的現象減弱而使彈性模數回到應該有的位置。
另外,本研究搭配了兩個擬合軟體輔助研究,分別是Elastic Visco-Plastic Self Consistent fitting (EVPSC)以及Convolutional Multiple Whole Profile fitting (CMWP)。從EVPSC可得知CoCrFeMnNi高熵合金內部的滑移機制並非單純只有傳統FCC滑移系統的貢獻,還有其他因素造成。而利用CMWP可以得知CoCrFeMnNi高熵合金的晶粒大小以及位錯差排密度。
摘要(英) Equimolar CoCrFeMnNi High Entropy Alloy is a single phase Face-Centered Cubic alloy. In FCC dendrites, Co, Cr, Fe, Mn and Ni these five atoms are randomly distributed. Since these five atoms have different electronegativities and atomic radii, lattice distortion takes place and hence affects its mechanical properties. This study aims at investigating the variation of lattice strain under different conditions by measuring its mechanical properties at different temperature levels and observing the changes of diffraction profiles under different temperatures and with in-situ Neutron Diffraction. Moreover, by observing the surface microstructure under different temperatures with Transmission Electron Microscope (TEM), the relationship between the microstructure and mechanical properties of the material is investigated.

From the result of tensile testing, it is known that CoCrFeMnNi High Entropy Alloy has both good strength and ductility at low temperature, even at room temperature, which is suitable for engineering material application [1]. From the result of in-situ Neutron Diffraction, it shows that the behavior of CoCrFeMnNi High Entropy Alloy is different from that of conventional alloys. The elasticity of High Entropy Alloys is usually smaller and the alloy is insensitive to temperature. Due to lattice distortion, the atoms are not at their lattice positions and hence the system experiences a distinct reaction from ordinary metals when stress is applied. Since high temperature thermal vibration cancels off the lattice strain, leading to the low sensation of the elastic modulus towards temperature.

From the microscopic result of in-situ Neutron Diffraction, we can see that the elastic modulus of each crystal plane increases with the temperature and has two particular types of trends. Plane (111), (200), (311), (400), etc. are in one group as their elastic modulus decreases linearly when the temperature arises while plane (220), (331), (420) and (222) belong to another group as their elastic modulus first increases when the temperature reaches 200oC and 400oC and then decreases after 600OC. This is due to the lattice distortion of High Entropy Alloys: the higher the temperature elevates, the further the distance between the neutrons will be. As a result, the reduction in lattice distortion causes the elastic modulus to go back to its original position.

Last but not least, this study collaborates with two fitting software applications, which are Elastic Visco-Plastic Self-Consistent model fitting (EVPSC) and Convolutional Multiple Whole Profile fitting (CMWP) respectively. EVPSC is used to identify other factors causing the slip mechanism of inner part in CoCrFeMnNi High Entropy Alloy besides the contribution from conventional alloys. The grain size and dislocation density of CoCrFeMnNi High Entropy Alloy can be determined with Convolutional Multiple Whole Profile fitting (CMWP).
關鍵字(中) ★ 高熵合金 關鍵字(英) ★ Hihg entropy alloy
論文目次 目錄
摘要 I
圖目錄 VIII
表目錄 XI
1.前言 1
2.文獻回顧 2
2.1. 高熵合金的發展 2
2.1.1. 緣起 2
2.1.2. 高熵合金的定義 3
2.1.3. 高熵合金的主要效應 4
2.1.4. 高熵合金的特點 11
2.2. FCC 晶體變形系統 13
2.2.1. FCC 晶體滑移系統 13
2.2.2. 湯木森四面體 (Thompson’sTetrahedron) 15
2.2.3. 部分差排 16
2.2.4. Lomer-Cottrell Barrier 18
2.2.5. 疊差 19
2.3. 卷積多繞射峰全譜分析Convolutional Multiple Whole Profile fitting (CMWP) 19
2.4. 彈性-黏塑性自我一致模型Elastic Visco-Plastic Self Consistent model (EVPSC) 20
3.實驗與數據分析 23
3.1.合金製備及實驗流程 23
3.1.1. 合金成分設計 23
3.1.2. 實驗流程 25
3.1.3. 真空電弧融煉 25
3.1.4. 均質化處理 26
3.1.5. 滾軋 27
3.2.中子繞射設備簡介與中子繞射數據分析 27
3.2.1. 中子繞射設備簡介 28
3.3.變溫拉伸試驗 29
3.4.微結構觀察 30
3.5.同步輻射吸收光譜分析 31
4. 結果 32
4.1.機械性質量測 32
4.2.中子繞射實驗 33
5.分析與討論 38
5.1.機械性質 38
5.2.中子繞射實驗 42
5.2.1. 膨脹係數與彈性係數之量測 42
5.2.2. 各晶面異向性探討 51
5.2.3. 晶格應變與繞射強度探討 56
6.結論 63
7.建議未來研究工作 65
8.參考文獻 66
9.附錄 68
9.1.curriculum vitae (CV) 68
9.2.CMWP軟體之操作流程 76
9.3.EVSPC 操作流程 98
9.4.期刊發表 107
9.5.期刊發表 113
參考文獻 [1]. Gludovatz, B., et al., A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014. 345(6201): p. 1153-1158.
[2]. B.S. Murty, J.W.Y., S.Ranganathan, High-Entropy Alloys. 2014: Butterworth-Heinemann.
[3]. Yeh, J.W., et al., Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303.
[4]. Chang, Y.A., Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science,. 2006.
[5]. Handbook, A., Alloy Phase Diagrams (ASM Handbook).
[6]. 許樹恩, 吳., X光繞射原理與材料結構分析. 1996: 中國材料科學學會.
[7]. A. Takeuchi, A.I., Materials Transactions Jim. 2000: p. 1372-1378.
[8]. R.B. F. R. d. Boer, W.C.M.M., A. R. Miedema and A. K. Niessen, Cohesion in Metals. 1988, North-Holland, Netherlands.
[9]. Ragone, D.V., Thermodynamics of Materials. 1994: Wiley.
[10]. 葉均蔚, 高熵合金的發展. 華岡工程學報, 2011. 27: p. 1-18.
[11]. D. Hull, D.J.B., Introduction to Dislocations. Elsevier Science, 2001.
[12]. Dieter, G.E., Mechanical metallurgy. 1976, London: McGraw-Hill.
[13]. Wang, H., et al., A crystal plasticity model for hexagonal close packed (HCP) crystals including twinning and de-twinning mechanisms. International Journal of Plasticity, 2013. 49: p. 36-52.
[14]. 李軝, Ni至CoCrFeMnNi等莫耳合金變形行為之比較探討, in 材料科學與工程學系. 2013, 清華大學: 台灣.
[15]. B. Clausen, T.L., M.A.M. Bourke, M.R. Daymond, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. 1999.

[16]. 鍾宜臻, Co-Ni-Fe-Cr-Mn(Al)合金系列X光繞射強度、硬度、熱傳導及熱膨脹之研究. 2007, 國立清華大學材料科學工程研究所: 台灣.
[17]. Laplanche, G., et al., Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy. Journal of Alloys and Compounds, 2015. 623: p. 348-353.
[18]. Wu, Y., et al., In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy. Applied Physics Letters, 2014. 104(5): p. 5
指導教授 陳儀帆(Yi-fan Chen) 審核日期 2015-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明